Section 3.1, 3.2: Discrete Random Variables

1 Two Examples

Definition 1 A random variable is a function that assigns a numerical value to each outcome in a sample space.

There are two types of random variables, discrete and continuous, based on the data types assigned to values. The above two examples illustrate the different ways a random variable must be defined. Accordingly, different techniques will be needed to work with the two different types of random variables.

Example 2 Consider the experiment of rolling a pair of dice and summing the faces. The random variable X assigns to each roll its sum. The following table indicates the probabilities for each value in X.

Sum	2	3	4	5	6	7	8	9	10	11	12
-----	---	---	---	---	---	---	---	---	----	----	----

Remark 3 Since the data is discrete, we call this function a discrete random variable.

Example 4 Let Y be the random variable that assigns to each human being, their height in inches. Given the uncountably infinite number of possible heights, it is not possible to define Y based on a table.

Remark 5 Since the data is continuous, we call this function a continuous random variable.

Problem 6 Consider the experiment of rolling a three sided-die and a 4-sided die and summing the faces. Construct a discrete random variable X.

Definition 7 A random variable with only two outcomes (0-1, true-false, rightwrong, on-off, etc.) is called a **Bernoulli random variable**.

CALVIN AND HOBBES @ 1993 Watterson. Reprinted with permission of UNIVERSAL PRESS SYNDICATE. All rights reserved.

Example 8 A multiple choice test with only one correct answer per questions is a Bernoulli random variable.

Problem 9 Formally describe a public safety officer's parking lot duty as a random variable.

Section 3.3: Probability Distributions for Discrete Random Variables

Definition 10 A probability density function (pdf) or probability mass function (pmf) for a discrete random variable X is a function whose domain is all possible values of X and assigns to each $x \in X$ the probability that x occurs. Note that the sum of all probabilities in a distribution must be 1.

Problem 11 Is the following function a probability distribution? Explain.

X	1	2	3
P(X)	0.5	0.6	-0.1

Example 12 Consider the following probability distribution.

X	1	2	3	4	5	6
P(X)	0.3	0.2	0.1	0.1		0.2

- 1. P(X = 3) =2. P(X = 4) =
- 3. P(X = 5) =
- 4. $P(X \le 3) =$
- 5. P(X < 3) =
- 6. $P(2 \le X \le 4) =$
- 7. P(X > 5) =

Example 13 Consider the experiment of rolling a pair of dice and summing the faces. The random variable X assigns to each roll its sum. The following table indicates the probabilities for each value in X. Together they form the probability density function.

Sum	2	3	4	5	6	7	8	9	10	11	12
Prob	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Problem 14 Consider the experiment of rolling a three sided-die and a 4-sided die and summing the faces. Construct the pdf for X.

Problem 15 A \$2 lottery ticket offers four chances to win different amounts of money as indicated by the following probability distribution model.

Prize	\$0	\$0.5	\$1	\$5	\$50
Prob	$\frac{71}{100}$	$\frac{15}{100}$	$\frac{10}{100}$	$\frac{3}{100}$	$\frac{1}{100}$

- 1. What is the probability that a ticket wins nothing?
- 2. What is the probability that a ticket wins money but is a losing proposition overall?
- 3. Two people buy one ticket each. What is the probability that they both win nothing?
- 4. Two people buy one ticket each. What is the probability that they both win money?
- 5. Ten people buy one ticket each. What is the probability that at least one person wins money?
- 6. Five hundred people buy one ticket each. What is the probability that at least one person wins the \$50 prize?

Problem 16 You draw a card from a deck. If you get a club you get \$5. If you get an Ace you get \$10. For all other cards you receive nothing. Let X be the random variable of money won. Create a probability distribution model for this game.

Problem 17 You draw a card from a deck. If you get a club you get nothing. If you get red card you get \$10. If you get a spade you get \$15 and get to select another card (without replacement). If the second is another spade you receive an additional \$20. You receive nothing for any non-spade card. Create a probability model for this game.

A random variable with a finite number of outcomes is necessarily discrete. However, it is possible for a discrete random variable to have an infinite number of outcomes.

Example 18 John flips a coin until he observes a tail. Construct the pdf for the number of flips of the coin for this discrete random variable.

2 Cumulative Distribution Functions

The cumulative distribution function of a discrete pdf is the sum of all probabilities of outcomes less than or equal to some fixed value x.

Definition 19 The cumulative distribution function F(x) of a pdf p(x) is $\sum_{y \le x} p(y)$.

Example 20 Consider the experiment of rolling a pair of dice and summing the faces. The random variable X assigns to each roll its sum. The following table indicates the probabilities for each value in X. Together they form the probability density function.

Sum	2	3	4	5	6	7	8	9	10	11	12
p(x)	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$
Now co	nstru	ict th	e cun	nulati	ive di	strib	ition	funct	ion o	f this	pdf.
Sum	2	3	4	5	6	7	8	9	10	11	12
F(x)	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{6}{36}$	$\frac{10}{36}$	$\frac{15}{36}$	$\frac{21}{36}$	$\frac{26}{36}$	$\frac{30}{36}$	$\frac{33}{36}$	$\frac{35}{36}$	$\frac{36}{36}$

Problem 21 Consider the experiment of rolling a three sided-die and a 4-sided die and summing the faces. Construct p(x) and F(x) for X.

Example 22 Consider rolling a fair die until a 5 appears. Construct the pdf for the number of rolls.

The probability of rolling a 5 (or any specific value) on a fair die is $p = \frac{1}{6}$. Since there is never a guarantee of ever getting a 5, the set of possible values for x is the set of positive integers. Since Z^+ is infinite, one cannot write down all possible values and probabilities. Instead we need to construct a function. It can help to model a few specific values of x before writing a general form. For example, the first 5 occurs on attempt number four with probability $\left(\frac{5}{6}\right)^3 * \frac{1}{6} = \frac{125}{1296}$. One has to roll a number other than 5, three times and then roll a 5. Generalizing this our pdf, $p(x) = \left(\frac{5}{6}\right)^{x-1} * \frac{1}{6}$.

Example 23 Consider rolling a fair die until a 5 appears. Construct the cumulative density function for the number of rolls. Since Z^+ is infinite we once again need to construct a general formula.

$$F(X) = \sum_{y=1}^{x} p(y)$$

= $\sum_{y=1}^{x} \left(\frac{5}{6}\right)^{y-1} * \frac{1}{6}$
= $\frac{1}{6} \sum_{y=1}^{x} \left(\frac{5}{6}\right)^{y-1}$
= $\frac{1}{6} \sum_{y=0}^{x-1} \left(\frac{5}{6}\right)^{y}.$

Fortunately this is a geometric series which converges nicely.

Remark 24 For those who need a slight refresher on the geometric series, let $s = a + ar + ar^2 + ... + ar^{n-1}$. Hence

$$rs = r \left(a + ar + ar^2 + \dots + ar^{n-1}\right)$$
$$= ar + ar^2 + \dots + ar^n$$

and now

$$s - rs =$$

$$a + ar + ar^{2} + \dots + ar^{n-1}$$

$$- (ar + ar^{2} + \dots + ar^{n-1} + ar^{n})$$

$$= a - ar^{n}$$
which implies
$$s(1 - r) = a(1 - r^{n})$$
which implies
$$s = \frac{a(1 - r^{n})}{(1 - r)}.$$

Returning back to

$$F(x) = \frac{1}{6} \sum_{y=0}^{x-1} \left(\frac{5}{6}\right)^y$$

= $\frac{1}{6} * \frac{a(1-r^n)}{(1-r)}$
where a = 1 and $r = \frac{5}{6}$
= $\frac{1}{6} * \frac{(1-(\frac{5}{6})^n)}{(1-\frac{5}{6})}$
= $\frac{1}{6} * \frac{(1-(\frac{5}{6})^n)}{(\frac{1}{6})}$
= $(1-(\frac{5}{6})^n).$