Section 3.5: Moments and Moment Generating Functions

Definition 1 Expected Values of integer powers of X and $X - \mu$ are called moments. For powers of X these are called moments about zero. For powers of $X - \mu$ these are called moments about the mean.

Example 2 $E(X^4)$ is the fourth moments about 0. $E((X - \mu)^3)$ is called the third moment about the mean.

Example 3 The expected value (or mean) is the first moment about 0.

$$E(X) = \sum_{x \in X} x * p(x).$$

Example 4 The variance, V(X), is the second moment about the mean.

$$\sigma^2 = \sum_{x \in X} \left(x - E(X) \right)^2 * p(x).$$

Example 5 Back to the experiment of rolling a pair of dice and summing the faces. The random variable X assigns to each roll its sum. The following table is our previously constructed probability model.

Sum	2	3	4	5	6	7	8	9	10	11	12
Prob	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

What is the first moment about 0 of the sum of a pair of dice? $E(X) = \sum_{x \in X} x * p(x) = 7$. What is the second moment about the mean of the sum of a pair of dice? $V(X) = \sigma^2 = \sum_{x \in X} (x - E(X))^2 * p(x) = \frac{35}{6}$.

Remark 6 The third moment about the mean (relative to standard deviation) is a measure of skewness.

$$\frac{E\left(\left(X-\mu\right)^{3}\right)}{\sigma^{3}} = E\left(\left(\frac{X-\mu}{\sigma}\right)^{3}\right)$$

For a symmetric distribution, the third moment about the mean is 0.

Example 7 Compute the third moment about the mean when rolling a pair of dice and summing the faces.

Sum	2	3	4	5	6	7	8	9	10	11	12
$\left(x - E(X)\right)^3$	-125	-64	-27	-8	-1	0	1	8	27	64	125
Prob	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

$$\begin{split} E\left(\left(X-\mu\right)^3\right) &= \sum_{x\in X} \left(x-E(X)\right)^3 * p(x) \\ &= -125 * \frac{1}{36} - 64 * \frac{2}{36} - 27 * \frac{3}{36} - 8 * \frac{4}{36} - 1 * \frac{5}{36} + 0 * \frac{6}{36} \\ &+ 1 * \frac{5}{36} + 8 * \frac{4}{36} + 27 * \frac{3}{36} + 64 * \frac{2}{36} + 125 * \frac{1}{36} \\ &= 0. \end{split}$$
And finally, $\frac{E\left((X-\mu)^3\right)}{\sigma^3} = \frac{0}{\sigma^3} = 0.$

Remark 8 A negative third moment about the mean indicates left skew. Similarly, A positive third moment about the mean indicates right skew.

Example 9 Determine skewness for the pdf defined in the table below.

 $\begin{array}{|c|c|c|c|c|c|c|c|} \hline X & 1 & 3 & 6 & 10 \\ \hline p(x) & .4 & .3 & .2 & .1 \\ \hline E(X) = 1 * .4 + 3 * .3 + 6 * .2 + 10 * .1 = 3.5 \\ \hline V(X) = \sum_{x \in X} (x - E(X))^2 * p(x) = (1 - 3.15)^2 * .4 + (3 - 3.15)^2 * .3 + (6 - 3.15)^2 * .2 + (10 - 3.15)^2 * .1 = 8.1725. Thus, \ \sigma = \sqrt{8.1725} = 2.8588. \\ \hline So, \ E\left((X - \mu)^3\right) = (1 - 3.5)^3 * .4 + (3 - 3.5)^3 * .3 + (6 - 3.5)^3 * .2 + (10 - 3.5)^3 * .1 = 24.3. \\ \hline And \ finally, \ \frac{E((X - \mu)^3)}{\sigma^3} = \frac{24.3}{2.8588^3} = 1.0401. \ Thus, \ our \ pdf \ exhibits \ some \ right \ skew. \end{array}$

As you can see from the previous examples, computing moments can involve many steps. Moment generating functions can ease this computational burden. Recall that we've already discussed the expected value of a function, E(h(x)). Here our function will be of the form e^{tX} .

Definition 10 The moment generating function (mgf) of a discrete random variable X is defined to be

$$M_x(t) = E(e^{tX})$$

= $\sum_{x \in X} e^{tx} p(x).$

We say that $M_x(t)$ exists if it is defined on a symmetric interval $(-t_0, t_0)$. Note that this interval contains 0 in its interior.

Example 11 Let X be any discrete random variable. What is $M_x(0)$?

$$M_x(0) = E(e^{0*X})$$

= $\sum_{x \in X} e^{0*x} p(x)$
= $\sum_{x \in X} e^0 p(x)$
= $\sum_{x \in X} p(x)$
= 1.

So $M_x(0)$ is the sum of the probabilities in the discrete random variable.

Example 12 Consider flipping an unbalanced coin that lands H 60% of the time. What is the moment generating function for this Bernoulli random variable?

$$\begin{array}{|c|c|c|}\hline X & 1 & 0 \\ \hline p(x) & .6 & .4 \\ \hline \end{array}$$

$$M_x(t) = E(e^{tX}) = \sum_{x \in X} e^{tx} p(x) = e^{0t} p(0) + e^{1t} p(1) = .4 + .6e^t.$$

Remark 13 Note the that the coefficients of this function are probabilities from the Bernoulli random variable.

Problem 14 Show that this will always be true for any Bernoulli random variable.

Consider any two Bernoulli random variables X and Y. If $M_x(t) = M_y(t)$ then X and Y have the same distribution (and hence X = Y) since the probabilities for 0 and 1 are identical. This fact is easy to see for Bernoulli random variables. It also turns out to be true for all discrete distributions. In every $M_x(t)$ the coefficients of our terms are the probabilities in the pdf.

Example 15 Let $M_x(t) = .3 + .2e^t + .3e^{2t} + .1e^{3t} + .1e^{4t}$ be the moment generating function for the random discrete variable X. Construct the pdf of X.

X	0	1	2	3	4
p(x)	.3	.2	.3	.1	.1

Problem 16 Is $.2 + .2e^t + .3e^{2t} + .2e^{3t} + .2e^{4t}$ a moment generating function for some discrete random variable X?

Example 17 Back to the experiment of rolling a pair of dice and summing the faces. The random variable X assigns to each roll its sum. The following table is our previously constructed probability model.

Sum	2	3	4	5	6	7	8	9	10	11	12
Prob	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Find the moment generating function

 $M_x(t) = \frac{e^{2t}}{36} + \frac{2e^{3t}}{36} + \frac{3e^{4t}}{36} + \frac{4e^{5t}}{36} + \frac{5e^{6t}}{36} + \frac{6e^{7t}}{36} + \frac{5e^{8t}}{36} + \frac{4e^{9t}}{36} + \frac{3e^{10t}}{36} + \frac{2e^{11t}}{36} + \frac{e^{12t}}{36} + \frac{12t}{36}$ What else can we do with moment generating functions? How do these

functions generate moments? Derivatives!

Definition 18 Let $M_x^{(r)}(t)$ be the r^{th} derivative of $M_x(t)$ with respect to t. $M_x^{(r)}(0)$ is the r^{th} moment about 0.

Theorem 19 Expected value of a distribution is $M_r^1(0)$.

Proof. $M_x(t) = \sum_{x \in X} e^{tx} p(x)$ so $M_x^1(t) = \sum_{x \in X} x e^{tx} p(x)$. Evaluated at t = 0, $M_x^1(0) = \sum_{x \in X} x e^{tx} p(x) = \sum_{x \in X} x p(x) = E(X)$.

Example 20 Recall the following Bernoulli random variable

X	1	0
p(x)	.6	.4

and we know $M_x(t) = .4 + .6e^t$. What is the expected value of this distribution? Now we know it is also $M_x^1(0)$. $M_x^1(t) = .6e^t$ and $M_x^1(0) = .6e^0 = .6$

Example 21 Use the moment generating function to determine expected value

 $\begin{aligned} & M_x^1(t) = \frac{2e^{2t}}{36} + \frac{6e^{3t}}{36} + \frac{12e^{4t}}{36} + \frac{20e^{5t}}{36} + \frac{30e^{6t}}{36} + \frac{42e^{7t}}{36} + \frac{40e^{8t}}{36} + \frac{36e^{9t}}{36} + \frac{30e^{10t}}{36} + \frac{22e^{11t}}{36} + \frac{12e^{12t}}{36} \\ & So, \ M_x^1(0) = \frac{2}{36} + \frac{6}{36} + \frac{12}{36} + \frac{20}{36} + \frac{30}{36} + \frac{42}{36} + \frac{40}{36} + \frac{40}{36} + \frac{36}{36} + \frac{30e^{10t}}{36} + \frac{22e^{11t}}{36} + \frac{12e^{12t}}{36} \\ & So, \ M_x^1(0) = \frac{2}{36} + \frac{6}{36} + \frac{12}{36} + \frac{20}{36} + \frac{30}{36} + \frac{42}{36} + \frac{40}{36} + \frac{36}{36} + \frac{30e^{10t}}{36} + \frac{22}{36} + \frac{12}{36} \\ & = 7. \end{aligned}$

Example 22 What is $M_r^2(0)$?

Since $M_x^1(t) = \sum_{x \in X} xe^{tx}p(x)$ then $M_x^2(t) = \sum_{x \in X} x^2e^{tx}p(x)$. Evaluated at $t = 0, M_x^2(0) = \sum_{x \in X} x^2e^{tx}p(x) = \sum_{x \in X} x^2p(x) = E(X^2)$. Becall our abortent formula for $V(X) = E(X^2)$.

Recall our shortcut formula for $V(X) = E(X^2) - [E(X)]^2$.

Example 23 Find the variance and standard deviation of the following Bernoulli random variable

X	1	0
p(x)	.6	.4

 $E(X^2) = M_x^2(0) = .6$ which is $M_x^2(t) = .6e^t$ evaluated at $t = 0.[E(X)]^2 = .6^2 = 0.36$. Thus, V(X) = .6 - .36 = 0.24 and $\sigma = \sqrt{.24} = 0.48990$

Example 24 Use moment generating functions to find V(X) when when rolling a pair of dice and summing the faces.

 $\begin{aligned} M_x^2(t) &= \frac{4e^{2t}}{36} + \frac{18e^{3t}}{36} + \frac{48e^{4t}}{36} + \frac{100e^{5t}}{36} + \frac{180e^{6t}}{36} + \frac{294e^{7t}}{36} + \frac{320e^{8t}}{36} + \frac{324e^{9t}}{36} + \frac$

Example 25 Returning to our unbalanced coin that lands H 60% of the time. Let X be the number of flips until a tail appears. Find $M_x(t)$ and use it to find E(X) and V(X).

While it is still the case that $\begin{array}{c|c} flip & H & T \\ \hline p(x) & .6 & .4 \\ \hline \end{array},$ $\begin{array}{c|c} X & 1 & 0 \\ \hline p(x) & .6 & .4 \\ \hline \end{array}$

is no longer the pdf. Worse yet, X is no longer finite. It is theoretically possible for X to assume any value in \mathbb{Z}^+ .

X	1	2	3	• • •	k
p(x)	.4	.6 * .4 = 0.24	$.6^2 * .4 = 0.144$	• • •	$.6^{k-1} * .4$

So, $M_x(t) = \sum_{x \in X} e^{tx} p(x) = \sum_{x=1}^{\infty} e^{tx} * .6^{x-1} * .4$ which is almost a geometric series. We need to perform some manipulations and use a limit to get where we need to be. See Section 3.1-3.3 notes for a refresher on the geometric series.

Bear in mind that our variable is t.

$$M_x(t) = \sum_{x=1}^{\infty} e^{tx} * .6^{x-1} * .4$$

= $.4 \sum_{x=1}^{\infty} e^{tx} * .6^{x-1}$
= $.4 \sum_{x=1}^{\infty} e^{t} e^{t(x-1)} * .6^{x-1}$
= $.4e^t \sum_{x=1}^{\infty} e^{t(x-1)} * .6^{x-1}$
= $.4e^t \sum_{x=1}^{\infty} (.6 * e^t)^{x-1}$
= $.4e^t \lim_{n \to \infty} \sum_{x=1}^n (.6 * e^t)^{x-1}$
= $.4e^t \lim_{n \to \infty} \frac{1 - (.6 * e^t)^n}{1 - .6 * e^t}$
= $.4e^t * \frac{1}{1 - .6 * e^t}$
= $\frac{.4e^t}{1 - .6 * e^t}$.

Remark 26 Note that any moment generating function of the form $M_x(t) = \sum_{x \in X} e^{tx} p(x) = \sum_{x=1}^{\infty} e^{tx} * .a^{x-1} * .b = \frac{be^t}{1 - ae^t}$. Since a = 1 - b you may see this written as $\frac{be^t}{1 - (1 - b)e^t}$. In general, for $M_x(t) = \frac{be^t}{1 - ae^t}$,

$$M_x^1(t) = \frac{be^t (1 - ae^t) - be(-ae^t)}{(1 - ae^t)^2}$$
$$= \frac{be^t (1 - ae^t + ae^t)}{(1 - ae^t)^2}$$
$$= \frac{be^t}{(1 - ae^t)^2}.$$

and

$$\begin{split} M_x^2(t) &= \frac{be^t \left(1 - ae^t\right)^2 - be^t(2) \left(1 - ae^t\right) \left(-ae^t\right)}{\left(\left(1 - ae^t\right)^2\right)^2} \\ &= \frac{be^t \left[\left(1 - ae^t\right)^2 - 2 \left(1 - ae^t\right) \left(-ae^t\right)\right]}{\left(1 - ae^t\right)^4} \\ &= \frac{be^t \left[1 - 2ae^t + a^2e^{2t} - 2\left(-ae^t + a^2e^{2t}\right)\right]}{\left(1 - ae^t\right)^4} \\ &= \frac{be^t \left[1 - 2ae^t + a^2e^{2t} - 2(-ae^t + a^2e^{2t})\right]}{\left(1 - ae^t\right)^4} \\ &= \frac{be^t \left[1 - 2ae^t + a^2e^{2t} - 2a^2e^{2t}\right]}{\left(1 - ae^t\right)^4} \\ &= \frac{be^t \left[1 + a^2e^{2t} - 2a^2e^{2t}\right]}{\left(1 - ae^t\right)^4} \\ &= \frac{be^t \left[1 - ae^2e^{2t}\right]}{\left(1 - ae^t\right)^4} \\ &= \frac{be^t (1 - ae^t)(1 + ae^t)}{\left(1 - ae^t\right)^4} \\ &= \frac{be^t (1 - ae^t)^3}{\left(1 - ae^t\right)^3}. \end{split}$$

With $M_x(t) = \frac{.4e^t}{1 - .6 * e^t}$, we know $M_x^1(t) = \frac{.4e^t}{(1 - .6e^t)^2}$ and thus $M_x^1(0) = \frac{.4e^0}{(1 - .6 * e^0)^2} = 2.5$. We expect to flip our unbalanced coin 2.5 times before seeing a tail. With $M_x^2(t) = \frac{.4e^t(1 + .6e^t)}{(1 - .6e^t)^3}$ and now $M_x^2(0) = \frac{.4e^0(1 + .6 * e^0)}{(1 - .6 * e^0)^3} = 10.0$. Thus, $V(X) = M_x^2(0) - (M_x^1(0))^2 = 10 - (2.5)^2 = 3.75$ which yields a standard deviation of $\sigma = \sqrt{3.75} = 1.9365$.

We've done this for general a and b. Frequently this geometric series sets a = 1 - b as probabilities. Consider p to be the probability of success. What is the expected number of attempts before the first success?

$$M_x^1(0) = \frac{pe^0}{(1 - (1 - p)e^0)^2} \\ = \frac{p}{(1 - (1 - p))^2} \\ = \frac{p}{p^2} \\ = \frac{1}{p}$$

What about standard deviation?

$$M_x^2(0) = \frac{pe^0(1+(1-p)e^0)}{(1-(1-p)e^0)^3}$$
$$= \frac{p(1+(1-p))}{(1-(1-p))^3}$$
$$= \frac{p(1+(1-p))}{p^3}$$
$$= \frac{(1+(1-p))}{p^2}$$

 \mathbf{SO}

$$V(X) = \frac{(1+(1-p))}{p^2} - \left(\frac{1}{p}\right)^2$$
$$= \frac{(1+(1-p))-1}{p^2}$$
$$= \frac{1-p}{p^2}$$

and $\sigma = \frac{\sqrt{1-p}}{p}$. We've done the hard, general form work so now we can plug and chug using the formulae. All we have to do is recognize that the moment generating function is a geometric series.

Example 27 Roll a pair of fair dice until you get a sum of 12. Find the mean and standard deviation for the number of rolls until one obtains the sum of 12.