4.3 Expected Value and Moment Generating Functions.

For a discrete random variable we know that $E(X)=\sum_{x \in X} x * p(x)$. The adjustment for the expected value of a continuous random variable is natural.
Definition 1 For a continuous random variable X with pdf, $f(x)$, the expected value or mean is $E(X)=\int_{-\infty}^{\infty} x * f(x) d x$.
Example 2 Consider the uniform distribution on the interval $[6,10]$. Note that $f(x)=\frac{1}{4}$ on the interval $[6,10]$. Determine the expected value. $E(X)=$ $\int_{-\infty}^{\infty} x * f(x) d x=\int_{6}^{10} x * \frac{1}{4} d x=\left.\frac{x^{2}}{8}\right|_{6} ^{10}=\frac{100-36}{8}=8.0$.
Example 3 Consider the uniform distribution the interval $[a, b]$. Note that $f(x)=\frac{1}{b-a}$ on the interval $[a, b]$. Determine the expected value. $E(X)=\int_{-\infty}^{\infty} x *$ $f(x) d x=\int_{a}^{b} x * \frac{1}{b-a} d x=\left.\frac{x^{2}}{2(b-a)}\right|_{a} ^{b}=\frac{b^{2}-a^{2}}{2(b-a)}=\frac{(b-a)(b+a)}{2(b-a)}=\frac{(b+a)}{2}$.
Example 4 The pdf of a continuous random variable is given by $f(x)=\left\{\begin{array}{ll}\frac{3}{2}\left(1-x^{2}\right) & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{array}\right\}$. Find $E(X) . \quad E(X)=\int_{-\infty}^{\infty} x * f(x) d x=\int_{0}^{1} x * \frac{3}{2}\left(1-x^{2}\right) d x=\frac{3}{2} \int_{0}^{1} x-x^{3} d x=$ $\frac{3}{2}\left(\frac{x^{2}}{2}-\left.\frac{x^{4}}{4}\right|_{0} ^{1}\right)=\frac{3}{2}\left(\frac{1^{2}}{2}-\frac{1^{4}}{4}\right)=\frac{3}{2} * \frac{1}{4}=\frac{3}{8}=0.375$.
Definition 5 The variance of X with pdf $f(x)$ is given by $V(X)=\int_{-\infty}^{\infty}(x-E(X))^{2} *$ $f(x) d x$.
Example 6 Consider the uniform distribution on the interval [6,10]. Note that $f(x)=\frac{1}{4}$ on the interval $[6,10]$ and $E(X)=8$. Determine the variance and standard deviation. $V(X)=\int_{-\infty}^{\infty}(x-E(X))^{2} * f(x) d x=\int_{6}^{10}(x-8)^{2} \frac{d x}{4}=$ $\frac{1}{4} \int_{6}^{10}\left(x^{2}-16 x+64\right) d x=\frac{1}{4}\left(\frac{x^{3}}{3}-8 x^{2}+\left.64 x\right|_{6} ^{10}\right)=\frac{1}{4}\left(\left(\frac{10^{3}}{3}-8 * 10^{2}+64 * 10\right)-\right.$ $\left.\left(\frac{6^{3}}{3}-8 * 6^{2}+64 * 6\right)\right)=\frac{4}{3}$. Subsequently $\sigma=\sqrt{\frac{4}{3}}=1.1547$.

Example 7 Consider the uniform distribution the interval $[a, b]$. Note that $f(x)=\frac{1}{b-a}$ on the interval $[a, b]$ and $E(X)=\frac{(b+a)}{2}$. Determine the variance and standard deviation.

$$
\begin{aligned}
V(X) & =\int_{-\infty}^{\infty}(x-E(X))^{2} * f(x) d x \\
& =\int_{a}^{b}\left(x-\frac{(b+a)}{2}\right)^{2} * \frac{1}{b-a} d x \\
& =\frac{1}{b-a} \int_{a}^{b}\left(x-\frac{(b+a)}{2}\right)^{2} d x \\
& =\frac{1}{b-a} *\left(\frac{1}{2} * \frac{1}{3}\left(\left(b-\frac{(b+a)}{2}\right)^{3}-\left(\left(a-\frac{(b+a)}{2}\right)^{3}\right)\right)\right. \\
& =\frac{1}{b-a} * \frac{1}{3}\left(\left(\frac{(b-a)}{2}\right)^{3}-\left(\frac{(a-b)}{2}\right)^{3}\right) \\
& =\frac{1}{b-a} * \frac{1}{3}\left(\left(\frac{(b-a)}{2}\right)^{3}+\left(\frac{(b-a)}{2}\right)^{3}\right) \\
& =\frac{1}{b-a} * \frac{1}{3} \\
& =\frac{1}{b-a} * \frac{1}{3}\left(2\left(\frac{(b-a)}{2}\right)^{3}\right) \\
& =\frac{1}{b-a} * \frac{1}{3} * \frac{(b-a)^{3}}{4}= \\
& =\frac{(b-a)^{2}}{12} .
\end{aligned}
$$

Thus, $\sigma=\sqrt{\frac{(b-a)^{2}}{12}}=\frac{b-a}{\sqrt{12}}$.
As before we may wish to compute the expected value of some linear function $h(x)$ based on the pdf $f(x) . E(h(X))=\int_{-\infty}^{\infty} h(x) * f(x) d x$.

Example 8 The number of tons of copper mined per week depends on the quality of the weather that may impede progress. The quality of the weather is measured by a real number between 0 and 3 with 0 being perfect and 3 being disastrous. We can mine $30-x^{3}$ tons of copper per week depending on the weather.

1. Find the value c such that $f(x)=c\left(30-x^{3}\right)$ is a pdf on $[0,3]$.

$$
\begin{aligned}
1 & =\int_{-\infty}^{\infty} c * f(x) d x \\
& =c \int_{-0}^{3}\left(30-x^{3}\right) d x \\
& =c\left(30 x-\left.\frac{x^{4}}{4}\right|_{0} ^{3}\right) \\
& =c\left(30 * 3-\frac{3^{4}}{4}\right) \\
& =\frac{279}{4} c
\end{aligned}
$$

So, $c=\frac{4}{279}$.
2. What is the expected amount of copper mined during a week?

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x * f(x) d x \\
& =\int_{-0}^{3} x * \frac{4}{279}\left(30-x^{3}\right) d x \\
& =\frac{4}{279} \int_{-0}^{3}\left(30 x-x^{4}\right) d x \\
& =\frac{4}{279}\left(15 x^{2}-\left.\frac{x^{5}}{5}\right|_{0} ^{3}\right) \\
& =\frac{4}{279} *\left(15 * 3^{2}-\frac{3^{5}}{5}\right)=\frac{192}{155}
\end{aligned}
$$

tons of copper.
3. If our profit is based on the spot price of copper ($\$ 3.14$ per pound on $10 / 20 / 2020$) and a fixed operating costs of $\$ 3,500$, how much profit do we expect to earn? Our profit function is $h(x)=1000 * 3.14 x-3500$ per x
tons of copper. So,

$$
\begin{aligned}
E(h(X)) & =\int_{-\infty}^{\infty} h(x) * f(x) d x \\
& =\frac{4}{279} \int_{-0}^{3}(1000 * 3.14 x-3500)\left(30-x^{3}\right) d x \\
& =\frac{4}{279} \int_{-0}^{3}-3140 x^{4}+3500 x^{3}+94200 x-105000 d x \\
& =\frac{4}{279}\left(\frac{-3140 x^{5}}{5}+\frac{3500 x^{4}}{4}+\frac{94200 x^{2}}{2}-\left.105000 x\right|_{0} ^{3}\right) \\
& =\frac{4}{279}\left(\frac{-3140 * 3^{5}}{5}+\frac{3500 * 3^{4}}{4}+\frac{94200 * 3^{2}}{2}-105000 * 3\right) \\
& =389.55 .
\end{aligned}
$$

Note that $h\left(\frac{192}{155}\right)=1000 * 3.14 * \frac{192}{155}-3500=389.55$
Recall that the moment generating function (mgf) of a discrete random variable X is defined to be

$$
\begin{aligned}
M_{x}(t) & =E\left(e^{t X}\right) \\
& =\sum_{x \in X} e^{t x} p(x)
\end{aligned}
$$

If X is continuous we cannot list all the values x.
Definition 9 The moment generating function (mgf) of a continuos random variable X is defined to be

$$
\begin{aligned}
M_{x}(t) & =E\left(e^{t X}\right) \\
& =\int_{-\infty}^{\infty} e^{t x} f(x) d x
\end{aligned}
$$

In the discrete case, $M_{x}(0)=\sum_{x \in X} e^{0} p(x)=\sum_{x \in X} p(x)=1$. Note that in the continuous case, $M_{x}(0)=\int_{-\infty}^{\infty} e^{0 * t} f(x) d x=\int_{-\infty}^{\infty} f(x) d x=1$ since $f(x)$ is a pdf.

Example 10 Find $E(X)$ and $V(X)$ for the distribution with $M_{x}(t)=\frac{2}{(2-t)}=$ $2 *(2-t)^{-1}$ for $t<2 . M_{x}^{1}(t)=2\left(-1(2-t)^{-2}(-1)\right)=\frac{2}{(2-t)^{2}}$. Thus, $E(X)=$

$$
\begin{aligned}
& M_{x}^{1}(0)=\frac{1}{2} . \quad M_{x}^{2}(t)=\frac{0-2 * 2(2-t)(-1)}{\left((2-t)^{2}\right)^{2}}=\frac{4(2-t)}{(2-t)^{4}}=\frac{4}{(2-t)^{3}} . \quad \text { Thus, } \\
& E\left(X^{2}\right)=M_{x}^{2}(0)=\frac{4}{(2-0)^{3}}=\frac{1}{2} . \text { Hence, } V(X)=\frac{1}{2}-\left(\frac{1}{2}\right)^{2}=\frac{1}{4} .
\end{aligned}
$$

