Section 5.2: Jointly Distributed Random Variables

Back to discrete random variables. The pdf of a single discrete random variable X, determines how much probability lands on a single value x. The joint probability distribution of two discrete distributions X and Y has a pdf that determines probability for ordered pairs of points (x, y). Rather than looking at a table for one variable and corresponding probabilities we have a two dimensional table. We've sort of dome something like this before back when we first looked at samples spaces.

Example 1 Let X represent the outcome of the first die roll and Y represent the outcome of the second die roll. Looking at the sum of the two die faces is a joint probability distribution. Each outcome is equally likely so the pdf is $f(x, y)=\frac{1}{36}$.

$(1,1)$	$(2,1)$	$(3,1)$	$(4,1)$	$(5,1)$	$(6,1)$
$(1,2)$	$(2,2)$	$(3,2)$	$(4,2)$	$(5,2)$	$(6,2)$
$(1,3)$	$(2,3)$	$(3,3)$	$(4,3)$	$(5,3)$	$(6,3)$
$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$	$(5,4)$	$(6,4)$
$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$	$(6,5)$
$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$
Compute each of the following probabilities.					

1. $f((2,3))=\frac{1}{36}$
2. $f(x=3, y \geq 5)=\sum_{x=3} \sum_{y \geq 5} \frac{1}{36}=\sum_{x=3} 2 * \frac{1}{36}=\sum_{x=3} \frac{2}{36}=1 * \frac{2}{36}=\frac{1}{18}$
3. $f(x \geq 4, y \geq 5)=\sum_{x \geq 4} \sum_{y \geq 5} \frac{1}{36}=\sum_{x \geq 4} 2 * \frac{1}{36}=\sum_{x \geq 4} \frac{2}{36}=3 * \frac{2}{36}=\frac{6}{36}=\frac{1}{6}$

Remark 1 A discrete function $f(x, y)$ is a joint pdf if $f(x, y) \geq 0$ and $\sum_{x} \sum_{y} f(x, y)=$ 1.

Problem 1 Is $f(x, y)=$| $X \mid Y$ | a | b | c |
| :--- | :--- | :--- | :--- |
| α | .3 | .2 | .1 |
| β | .1 | .2 | .3 | a pdf? No since $\sum_{x} \sum_{y} f(x, y)=$

1.2 .

Problem 2 Is $f(x, y)=$| $X \mid Y$ | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 1 | .1 | .2 | .1 |
| 2 | .1 | .2 | .3 | 1 and $f(x, y) \geq 0$.

Problem 3 We know that $f(x, y)=$| $X \mid Y$ | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 1 | .1 | .2 | .1 |
| 2 | .1 | .2 | .3 | is a $p d f$.

1. What is $f((2,3))$? $f((2,3))=.3$.
2. What is $f((x=2, y \geq 2))$? $f((x=2, y \geq 2))=\sum_{x=2} \sum_{y \geq 2} f(x, y)=$ $\sum_{y \geq 2} f(2, y)=f(2,2)+f(2,3)=.2+.3=.5$.
3. What is $f((x, x))$? $f((x, x))=\sum_{x} \sum_{y=x} f(x, y)=\sum_{x} f(x, x)=f(1,1)+$ $f(2,2)=.1+.2=.3$.

Definition 2 The marginal pdf of $f(x, y)$ is found by fixing one variable as a constant and summing over all possible values of the other variable. Note that marginal pdfs are just row or column sums for a discrete joint distribution.

Example 2 For $f(x, y)=$| $X \mid Y$ | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 1 | .1 | .2 | .1 |
| 2 | .1 | .2 | .3 | compute

1. the marginal pdf of $x=1$. $\quad f_{X}(1)=\sum_{x=1} \sum_{y} f(x, y)=\sum_{y} f(1, y)=f(1,1)+$ $f(1,2)+f(1,3)=.1+.2+.1=.4$
2. the marginal pdf of $y=3 . f_{Y}(3)=\sum_{x} \sum_{y=3} f(x, y)=\sum_{x} f(x, 3)=f(1,3)+$ $f(2,3)=.1+.3=.4$

Next we rinse and repeat for continuous random variables. We equate probability to area under the curve for a single valued continuous function $f(x)$. We do the same here with volume in a bounded region for the mutli-value function $f(x, y)$. As before $f(x, y) \geq 0$ and $\iint f(x, y) d x d y=1$.

Example 3 Is $f(x, y)=x+y$ a pdf on $0 \leq x \leq 1$ and $0 \leq x \leq 1$? The
function is always non-negative. How about total volume?

$$
\begin{aligned}
& \iint f(x, y) d x d y \\
= & \int_{0}^{1} \int_{0}^{1} x+y d x d y \\
= & \int_{0}^{1} x y+\left.\frac{y^{2}}{2} d x\right|_{0} ^{1} \\
= & \int_{0}^{1}\left(x+\frac{1^{2}}{2}\right)-\left(x * 0+\frac{0^{2}}{2}\right) d x \\
= & \int_{0}^{1}\left(x+\frac{1}{2}\right) d x \\
= & \frac{x^{2}}{2}+\left.\frac{x}{2}\right|_{0} ^{1} \\
= & \left(\frac{1^{2}}{2}+\frac{1}{2}\right)-\left(\frac{0^{2}}{2}+\frac{0}{2}\right)= \\
= & 1
\end{aligned}
$$

Example 4 Find the constant c that makes $f(x, y)=c(x+y)$ a pdf on $0 \leq$ $x \leq 1$ and $0 \leq y \leq 2$.

$$
\begin{aligned}
1 & =\iint c f(x, y) d x d y \\
& =c \int_{0}^{2} \int_{0}^{1} x+y d x d y \\
& =c \int_{0}^{1} x y+\left.\frac{y^{2}}{2} d x\right|_{0} ^{2} \\
& =c \int_{0}^{1} x y+\left.\frac{y^{2}}{2} d x\right|_{0} ^{2} \\
& =c \int_{0}^{1}\left(2 x+\frac{2^{2}}{2}\right)-\left(x * 0+\frac{0^{2}}{2}\right) d x \\
& =c \int_{0}^{1}(2 x+2) d x \\
& =c\left(x^{2}+\left.2 x\right|_{0} ^{1}\right) \\
& =c\left(\left(1^{2}+2 * 1\right)-\left(0^{2}+2 * 0\right)\right) \\
& =3 c
\end{aligned}
$$

and $c=\frac{1}{3}$.
Example 5 For the pdf $f(x, y)=\frac{x+y}{3}$ on $0 \leq x \leq 1$ and $0 \leq y \leq 2$, find the $P(x \leq 0.5, y \leq 1)$.
$\int_{0}^{1} \int_{0}^{.5} \frac{x+y}{3} d x d y=\frac{1}{3} \int_{0}^{1} \int_{0}^{.5} x+y d x d y=\frac{1}{3} \int_{0}^{.5} x y+\left.\frac{y^{2}}{2} d x\right|_{0} ^{1}=\frac{1}{3} \int_{0}^{.5} x+\frac{1}{2}$
$d x=\frac{1}{3} *\left(\frac{x^{2}}{2}+\frac{x}{2}| |_{0}^{5}\right)=\frac{1}{3} *\left(\frac{.5^{2}}{2}+\frac{.5}{2}\right)=0.125$
We can also compute marginal pdfs in continuous distributions. We do so by fixing one variable and integrating over the other.
Example 6 For the pdf $f(x, y)=\frac{x+y}{3}$ on $0 \leq x \leq 1$ and $0 \leq y \leq 2$, find the marginal pdf of X, denoted $f_{X}(x)$.
$f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{0}^{2} \frac{x+y}{3} d y=\frac{1}{3}\left(x y+\left.\frac{y^{2}}{2}\right|_{0} ^{2}\right)=\frac{1}{3}\left(2 x+\frac{2^{2}}{2}\right)=\frac{2}{3} x+\frac{2}{3}$.
Example 7 For the pdf $f(x, y)=\frac{x+y}{3}$ on $0 \leq x \leq 1$ and $0 \leq y \leq 2$, find the marginal pdf of Y, denoted $f_{Y}(y)$.
$f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x=\int_{0}^{1} \frac{x+y}{3} d x=\frac{1}{3}\left(x y+\left.\frac{x^{2}}{2}\right|_{0} ^{1}\right)=\frac{1}{3}\left(y+\frac{1}{2}\right)=\frac{1}{3} y+\frac{1}{6}$.
Marginal pdfs allow us to extend the definition of independent variables to joint distributions. Recall that for events A and B, A and B are independent if and only if $P(A \cap B)=P(A) * P(B)$. For joint distributions we define random variables X and Y to be independent if and only if $f(x, y)=f_{X}(x) * f_{Y}(y)$ for joint random variables.

Example 8 We know that $f(x, y)=$| $X \mid Y$ | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 1 | .1 | .2 | .1 |
| 2 | .1 | .2 | .3 | is a pdf. Are X and

Y independent variables? First, let's start off with the question is $f(1,1)=$ $f_{X}(1) * f_{Y}(1)$?
$f_{X}(1) * f_{Y}(1)=.4 * .2=0.08$ while $f(1,1)=.1$. So $f(1,1) \neq f_{X}(1) * f_{Y}(1)$, and thus X and Y are not independent. To show that X and Y are independent we would need to check all six cases of values of $f(x, y)$.
Example 9 For the pdf $f(x, y)=\frac{x+y}{3}$ on $0 \leq x \leq 1$ and $0 \leq y \leq 2$, are X and Y independent? Note that

$$
\begin{aligned}
& f_{X}(x) * f_{Y}(y) \\
= & \left(\frac{2}{3} x+\frac{2}{3}\right) *\left(\frac{1}{3} y+\frac{1}{6}\right) \\
= & \frac{1}{9} x+\frac{2}{9} y+\frac{2}{9} x y+\frac{1}{9} \\
\neq & \frac{x+y}{3} .
\end{aligned}
$$

and the random variables are not independent. To show that X and Y are independent we would need to symbolically have $f(x, y)=f_{X}(x) * f_{Y}(y)$ and the bounded regions must form a rectangle whose sides are parallel to the coordinate axes.

Example 10 Consider the joint pdf $f(x, y)=\frac{1}{36}$ for the faces of two dice X and Y. Since $f_{X}(x)=f_{Y}(y)=\frac{1}{6}, X$ and Y are independent variables.

Example 11 Consider the joint pdf $f(x, y)=$| $X \mid Y$ | 1 | 2 |
| :--- | :--- | :--- |
| 1 | .2 | .2 |
| 2 | .3 | .3 | . Are X and Y independent?

$$
\begin{aligned}
& f(1,1)=.2 ; f_{X}(1) * f_{Y}(1)=.4 * .5=.2 \\
& f(1,2)=.2 ; f_{X}(1) * f_{Y}(2)=.4 * .5=.2 \\
& f(2,1)=.3 ; f_{X}(2) * f_{Y}(1)=.6 * .5=.3 \\
& f(2,2)=.3 ; f_{X}(2) * f_{Y}(2)=.6 * .5=.3
\end{aligned}
$$

and yes, X and Y are independent random variables.

Example 12 When inspecting a driver at a traffic stop, the patrol officer checks to see if the driver has alcohol on their breath (A) and if they have a valid driver's license (V). Assume the results of these checks are independent Bernoulli functions where it is known that 20\% of drivers do not have a valid license and 10% of drivers have alcohol on their breath. Construct the joint distribution table. From the given percentages we know that $f_{V}(0)=.2, f_{V}(1)=.8, f_{A}(0)=.9$,
and $f_{A}(1)=$.1. We initially format the table as

$V \mid A$	0	1	Marginal Totals
0			.2
1			.8
	.9	.1	

Since the random variables are independent we can simply multiply to get each

individual entry and | $V \mid A$ | 0 | 1 | Marginal Totals |
| :--- | :--- | :--- | :--- |
| | 0 | .18 | .02 |
| .2 | | | |
| | 1 | .72 | .08 |
| | .9 | .1 | |

When considering the joint distribution or independence of multiple variables, these definitions are extended in the natural way to multiple products of marginal pdfs. A binomial distribution is a discrete random variable X. Extending this idea we consider the multinomial distribution as a joint distribution of two or more binomial distributions.

Example 13 David and Michelle plan to meet between 7:00 and 7:30 at a theatre for an 8:00 movie. Let D represent David's arrival time and M represent Michelle's arrival time. Both M and D are uniform distributions on the interval $[7,7.5]$. Also, D and M are independent events.

1. What is the joint pdf? Since D is uniform then its pdf $f(x)=\frac{1}{.5}=$ 2.0. This is also the distribution of M. The joint pdf is $f(x, y)=4$ on $7 \leq x \leq 7.5$ and $7 \leq y \leq 7 . .5$ since the random variables are independent.
2. What is the probability that both David and Michelle arrive before $7: 12$?

$$
\int_{7}^{7.27 .2} \int_{7}^{7} 4 d x d y=\left.\int_{7}^{7.2} 4 y\right|_{7} ^{7.2} d x=\int_{7}^{7.2} 4(7.2-7.0) d x=\int_{7}^{7.2} .8 d x=\left..8 x\right|_{7} ^{7.2}=
$$

3. What is the probability that both David and Michelle arrive exactly at 7:30?
The probability is 0 since this is one exact value in a continuous distribution.
4. What is the probability that Michelle arrives before 7:06 and David arrives after 7:24?

$$
\int_{\substack{7.4 \\ .4}}^{\substack{7.57 .1}} 4 d x d y=\left.\int_{7.4}^{7.5} 4 y\right|_{7} ^{7.1} d x=\int_{7.4}^{7.5} 4(7.1-7.0) d x=\int_{7.4}^{7.5} .4 d x=\left..4 x\right|_{7.4} ^{7.5}=
$$

Definition 3 A multinomial experiment consists of n fixed trials where each trial can result in only one of r possible outcomes and the trials are independent. We denote the likelihood of outcome i to be p_{i} which is fixed. Note that $\sum_{i} p_{i}=1$. The joint pdf of these independent variables is $p\left(x_{1}, x_{2}, \ldots x_{r}\right)=$ $\frac{n!}{x_{1}!* x_{2}!* \ldots * x_{r}!}\left(p_{1}\right)^{x_{1}} *\left(p_{2}\right)^{x_{2}} * \ldots *\left(p_{r}\right)^{x_{r}}$ where $\sum_{i} x_{i}=n$.

Example 14 A large bag of Hersey's miniatures contains multiple pieces in equal ratios of four types of candies: milk chocolate, dark chocolate, Mr. Goodbar and Krackel. When picking four candies from a bag what is the probability that you select

1. Four dark chocolates: $\frac{4!}{4!* 0!* 0!* 0!}\left(\frac{1}{4}\right)^{4} *\left(\frac{1}{4}\right)^{0} *\left(\frac{1}{4}\right)^{0} *\left(\frac{1}{4}\right)^{0}=1 *\left(\frac{1}{4}\right)^{4}=$ $\frac{1}{256}$;
2. two Mr. Goodbars and two Krackels: $\frac{4!}{2!* 2!* 0!* 0!} *\left(\frac{1}{4}\right)^{2} *\left(\frac{1}{4}\right)^{2} *\left(\frac{1}{4}\right)^{0} *$ $\left(\frac{1}{4}\right)^{0}=6 *\left(\frac{1}{4}\right)^{4}=\frac{3}{128} ;$
3. one of each candy: $\frac{4!}{1!* 1!* 1!* 1!} *\left(\frac{1}{4}\right)^{1} *\left(\frac{1}{4}\right)^{1} *\left(\frac{1}{4}\right)^{1} *\left(\frac{1}{4}\right)^{1}=24 *\left(\frac{1}{4}\right)^{4}=$ $\frac{3}{32}$.

Where does $\frac{n!}{x_{1}!* x_{2}!* \ldots * x_{r}!}$ come from? With n picks we need to select x_{i} of each type i. This can be done in $\binom{n}{x_{1}} *\binom{n}{x_{2}} *\binom{n}{x_{3}} * \ldots *\binom{n}{x_{r}}$ ways. Plugging
and chugging into the formula for binomial coefficients we get

$$
\begin{aligned}
& \binom{n}{x_{1}} *\binom{n-x_{1}}{x_{2}} *\binom{n-x_{1}-x_{2}}{x_{3}} * \ldots *\binom{n-x_{1}-x_{2}-\ldots-x_{r-1}}{x_{r}} \\
= & \frac{n!}{x_{1}!\left(n-x_{1}\right)!} * \frac{\left(n-x_{1}\right)!}{x_{2}!\left(n-x_{1}-x_{2}\right)!} * \frac{\left(n-x_{1}-x_{2}\right)!}{x_{3}!\left(n-x_{1}-x_{2}-x_{3}\right)!} * \ldots * \frac{\left(n-x_{1}-x_{2}-\ldots-x_{r-1}\right)!}{x_{r}!\left(n-x_{1}-x_{2}-x_{3} \ldots-x_{r-1}-x_{r}\right)!} \\
= & \frac{n!}{x_{1}!* x_{2}!* \ldots * x_{r}!* 0!} \\
= & \frac{n!}{x_{1}!* x_{2}!* \ldots * x_{r}!} .
\end{aligned}
$$

