
Section 5.2: Jointly Distributed Random
Variables

Back to discrete random variables. The pdf of a single discrete random
variable X, determines how much probability lands on a single value x. The
joint probability distribution of two discrete distributions X and Y has a pdf
that determines probability for ordered pairs of points (x; y). Rather than
looking at a table for one variable and corresponding probabilities we have a
two dimensional table. We�ve sort of dome something like this before back
when we �rst looked at samples spaces.

Example 1 Let X represent the outcome of the �rst die roll and Y represent
the outcome of the second die roll. Looking at the sum of the two die faces
is a joint probability distribution. Each outcome is equally likely so the pdf is
f(x; y) = 1

36 .
(1; 1) (2; 1) (3; 1) (4; 1) (5; 1) (6; 1)
(1; 2) (2; 2) (3; 2) (4; 2) (5; 2) (6; 2)
(1; 3) (2; 3) (3; 3) (4; 3) (5; 3) (6; 3)
(1; 4) (2; 4) (3; 4) (4; 4) (5; 4) (6; 4)
(1; 5) (2; 5) (3; 5) (4; 5) (5; 5) (6; 5)
(1; 6) (2; 6) (3; 6) (4; 6) (5; 6) (6; 6)
Compute each of the following probabilities.

1. f((2; 3)) = 1
36

2. f(x = 3; y � 5) =
P
x=3

P
y�5

1
36 =

P
x=3

2 � 1
36 =

P
x=3

2
36 = 1 �

2
36 =

1
18

3. f(x � 4; y � 5) =
P
x�4

P
y�5

1
36 =

P
x�4

2 � 1
36 =

P
x�4

2
36 = 3 �

2
36 =

6
36 =

1
6

Remark 1 A discrete function f(x; y) is a joint pdf if f(x; y) � 0 and
P
x

P
y
f(x; y) =

1:

Problem 1 Is f(x; y) =
XjY a b c
� .3 .2 .1
� .1 .2 .3

a pdf? No since
P
x

P
y
f(x; y) =

1:2.
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Problem 2 Is f(x; y) =
XjY 1 2 3
1 .1 .2 .1
2 .1 .2 .3

a pdf? Yes, since
P
x

P
y
f(x; y) =

1 and f(x; y) � 0:

Problem 3 We know that f(x; y) =
XjY 1 2 3
1 .1 .2 .1
2 .1 .2 .3

is a pdf.

1. What is f((2; 3))? f((2; 3)) = :3:

2. What is f((x = 2; y � 2))? f((x = 2; y � 2)) =
P
x=2

P
y�2

f(x; y) =P
y�2

f(2; y) = f(2; 2) + f(2; 3) = :2 + :3 = :5.

3. What is f((x; x))? f((x; x)) =
P
x

P
y=x

f(x; y) =
P
x
f(x; x) = f(1; 1) +

f(2; 2) = :1 + :2 = :3.

De�nition 2 The marginal pdf of f(x; y) is found by �xing one variable as a
constant and summing over all possible values of the other variable. Note that
marginal pdfs are just row or column sums for a discrete joint distribution.

Example 2 For f(x; y) =
XjY 1 2 3
1 .1 .2 .1
2 .1 .2 .3

compute

1. the marginal pdf of x = 1. fX(1) =
P
x=1

P
y
f(x; y) =

P
y
f(1; y) = f(1; 1)+

f(1; 2) + f(1; 3) = :1 + :2 + :1 = :4

2. the marginal pdf of y = 3: fY (3) =
P
x

P
y=3

f(x; y) =
P
x
f(x; 3) = f(1; 3) +

f(2; 3) = :1 + :3 = :4

Next we rinse and repeat for continuous random variables. We equate
probability to area under the curve for a single valued continuous function f(x).
We do the same here with volume in a bounded region for the mutli-value

function f(x; y). As before f(x; y) � 0 and
Z Z

f(x; y) dx dy = 1.

Example 3 Is f(x; y) = x + y a pdf on 0 � x � 1 and 0 � x � 1? The
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function is always non-negative. How about total volume?Z Z
f(x; y) dx dy

=

Z 1

0

Z 1

0

x+ y dx dy

=

Z 1

0

xy +
y2

2
dxj10

=

Z 1

0

(x+
12

2
)� (x � 0 + 0

2

2
) dx

=

Z 1

0

(x+
1

2
) dx

=
x2

2
+
x

2
j10

= (
12

2
+
1

2
)� (0

2

2
+
0

2
) =

= 1

Example 4 Find the constant c that makes f(x; y) = c(x + y) a pdf on 0 �
x � 1 and 0 � y � 2:

1 =

Z Z
cf(x; y) dx dy

= c

Z 2

0

Z 1

0

x+ y dx dy

= c

Z 1

0

xy +
y2

2
dx j20

= c

Z 1

0

xy +
y2

2
dx j20

= c

Z 1

0

(2x+
22

2
)� (x � 0 + 0

2

2
) dx

= c

Z 1

0

(2x+ 2) dx

= c
�
x2 + 2xj10

�
= c((12 + 2 � 1)� (02 + 2 � 0))
= 3c

and c = 1
3 .

Example 5 For the pdf f(x; y) =
x+ y

3
on 0 � x � 1 and 0 � y � 2, �nd the

P (x � 0:5; y � 1).
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Z 1

0

Z :5

0

x+ y

3
dx dy = 1

3

Z 1

0

Z :5

0

x+ y dx dy = 1
3

Z :5

0

xy + y2

2 dx j10 = 1
3

Z :5

0

x+ 1
2

dx = 1
3 � (

x2

2 +
x
2 j
:5
0 ) =

1
3 �
�
:52

2 +
:5
2

�
= 0:125

We can also compute marginal pdfs in continuous distributions. We do so
by �xing one variable and integrating over the other.

Example 6 For the pdf f(x; y) =
x+ y

3
on 0 � x � 1 and 0 � y � 2, �nd the

marginal pdf of X, denoted fX(x).

fX(x) =

Z 1

�1
f(x; y) dy =

Z 2

0

x+ y

3
dy = 1

3 (xy +
y2

2 j
2
0) =

1
3 (2x+

22

2 ) =
2
3x+

2
3 .

Example 7 For the pdf f(x; y) =
x+ y

3
on 0 � x � 1 and 0 � y � 2, �nd the

marginal pdf of Y , denoted fY (y).

fY (y) =

Z 1

�1
f(x; y) dx =

Z 1

0

x+ y

3
dx = 1

3 (xy +
x2

2 j
1
0) =

1
3 (y +

1
2 ) =

1
3y +

1
6 :

Marginal pdfs allow us to extend the de�nition of independent variables to
joint distributions. Recall that for events A and B; A and B are independent if
and only if P (A\B) = P (A) �P (B). For joint distributions we de�ne random
variables X and Y to be independent if and only if f(x; y) = fX(x) � fY (y) for
joint random variables.

Example 8 We know that f(x; y) =
XjY 1 2 3
1 .1 .2 .1
2 .1 .2 .3

is a pdf. Are X and

Y independent variables? First, let�s start o¤ with the question is f(1; 1) =
fX(1) � fY (1)?
fX(1)�fY (1) = :4� :2 = 0:08 while f(1; 1) = :1. So f(1; 1) 6= fX(1)�fY (1), and
thus X and Y are not independent. To show that X and Y are independent we
would need to check all six cases of values of f(x; y).

Example 9 For the pdf f(x; y) =
x+ y

3
on 0 � x � 1 and 0 � y � 2, are X

and Y independent? Note that

fX(x) � fY (y)

= (
2

3
x+

2

3
) � (1

3
y +

1

6
)

=
1

9
x+

2

9
y +

2

9
xy +

1

9

6= x+ y

3
:

and the random variables are not independent. To show that X and Y are
independent we would need to symbolically have f(x; y) = fX(x)�fY (y) and the
bounded regions must form a rectangle whose sides are parallel to the coordinate
axes.
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Example 10 Consider the joint pdf f(x; y) = 1
36 for the faces of two dice X

and Y . Since fX(x) = fY (y) = 1
6 , X and Y are independent variables.

Example 11 Consider the joint pdf f(x; y) =
XjY 1 2
1 .2 .2
2 .3 .3

. Are X and Y

independent?

f(1; 1) = :2; fX(1) � fY (1) = :4 � :5 = :2
f(1; 2) = :2; fX(1) � fY (2) = :4 � :5 = :2
f(2; 1) = :3; fX(2) � fY (1) = :6 � :5 = :3
f(2; 2) = :3; fX(2) � fY (2) = :6 � :5 = :3

and yes, X and Y are independent random variables.

Example 12 When inspecting a driver at a tra¢ c stop, the patrol o¢ cer checks
to see if the driver has alcohol on their breath (A) and if they have a valid driver�s
license (V ). Assume the results of these checks are independent Bernoulli func-
tions where it is known that 20% of drivers do not have a valid license and 10%
of drivers have alcohol on their breath. Construct the joint distribution table.
From the given percentages we know that fV (0) = :2, fV (1) = :8, fA(0) = :9,

and fA(1) = :1. We initially format the table as

V jA 0 1 Marginal Totals
0 :2
1 :8

:9 :1

.

Since the random variables are independent we can simply multiply to get each

individual entry and

V jA 0 1 Marginal Totals
0 :18 :02 :2
1 :72 :08 :8

:9 :1

.

When considering the joint distribution or independence of multiple vari-
ables, these de�nitions are extended in the natural way to multiple products of
marginal pdfs. A binomial distribution is a discrete random variable X. Ex-
tending this idea we consider the multinomial distribution as a joint distribution
of two or more binomial distributions.

Example 13 David and Michelle plan to meet between 7:00 and 7:30 at a the-
atre for an 8:00 movie. Let D represent David�s arrival time and M represent
Michelle�s arrival time. Both M and D are uniform distributions on the inter-
val [7; 7:5]. Also, D and M are independent events.

1. What is the joint pdf? Since D is uniform then its pdf f(x) = 1
:5 =

2:0. This is also the distribution of M . The joint pdf is f(x; y) = 4 on
7 � x � 7:5 and 7 � y � 7::5 since the random variables are independent.
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2. What is the probability that both David and Michelle arrive before 7:12?
7:2Z
7

7:2Z
7

4 dx dy =

7:2Z
7

4y j7:27 dx =

7:2Z
7

4(7:2 � 7:0) dx =
7:2Z
7

:8 dx = :8xj7:27 =

:8 � :2 = :16.

3. What is the probability that both David and Michelle arrive exactly at
7:30?
The probability is 0 since this is one exact value in a continuous distribu-
tion.

4. What is the probability that Michelle arrives before 7:06 and David arrives
after 7:24?
7:5Z
7:4

7:1Z
7

4 dx dy =

7:5Z
7:4

4y j7:17 dx =

7:5Z
7:4

4(7:1 � 7:0) dx =
7:5Z
7:4

:4 dx = :4xj7:57:4 =

:4 � :1 = 0:04.

De�nition 3 A multinomial experiment consists of n �xed trials where each
trial can result in only one of r possible outcomes and the trials are indepen-
dent. We denote the likelihood of outcome i to be pi which is �xed. Note thatP
i

pi = 1. The joint pdf of these independent variables is p(x1; x2; :::xr) =

n!

x1! � x2! � ::: � xr!
(p1)

x1 � (p2)x2 � ::: � (pr)xr where
P
i

xi = n.

Example 14 A large bag of Hersey�s miniatures contains multiple pieces in
equal ratios of four types of candies: milk chocolate, dark chocolate, Mr. Goodbar
and Krackel. When picking four candies from a bag what is the probability that
you select

1. Four dark chocolates:
4!

4! � 0! � 0! � 0!
�
1
4

�4 �� 14�0 �� 14�0 �� 14�0 = 1�� 14�4 =
1
256 ;

2. two Mr. Goodbars and two Krackels:
4!

2! � 2! � 0! � 0! �
�
1
4

�2 � � 14�2 � � 14�0 ��
1
4

�0
= 6 �

�
1
4

�4
= 3

128 ;

3. one of each candy:
4!

1! � 1! � 1! � 1! �
�
1
4

�1 � � 14�1 � � 14�1 � � 14�1 = 24 � � 14�4 =
3
32 .

Where does
n!

x1! � x2! � ::: � xr!
come from? With n picks we need to select

xi of each type i: This can be done in
�
n
x1

�
�
�
n
x2

�
�
�
n
x3

�
� :::�

�
n
xr

�
ways. Plugging
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and chugging into the formula for binomial coe¢ cients we get�
n

x1

�
�
�
n� x1
x2

�
�
�
n� x1 � x2

x3

�
� ::: �

�
n� x1 � x2 � :::� xr�1

xr

�
=

n!

x1!(n� x1)!
� (n� x1)!
x2!(n� x1 � x2)!

� (n� x1 � x2)!
x3!(n� x1 � x2 � x3)!

� ::: � (n� x1 � x2 � :::� xr�1)!
xr!(n� x1 � x2 � x3:::� xr�1 � xr)!

=
n!

x1! � x2! � ::: � xr! � 0!

=
n!

x1! � x2! � ::: � xr!
:
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