Section 5.4: Conditional Distributions

When determining the conditional probability that event A occurs given that event B has occurred, we are very familiar with the formula $P(A|B) = \frac{P(A \cap B)}{P(B)}$. Similar forms are used for conditional distributions in joint pdfs.

Definition 1 For a joint pdf f(x, y) and marginal X $pdf f_X(x)$ and any x where $f_X(x) > 0$, the conditional pdf of Y given X is

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}.$$

Example 1 Going back to looking at the sum of the two die faces as a joint probability distribution. Each outcome is equally likely so the pdf is $f(x,y) = \frac{1}{36}$.

+	0				+
(1,1)	(2,1)	(3,1)	(4, 1)	(5,1)	(6, 1)
(1,2)	(2,2)	(3, 2)	(4, 2)	(5, 2)	(6, 2)
(1,3)	(2,3)	(3,3)	(4, 3)	(5, 3)	(6, 3)
(1,4)	(2,4)	(3, 4)	(4, 4)	(5, 4)	(6, 4)
(1,5)	(2,5)	(3, 5)	(4,5)	(5,5)	(6, 5)
(1, 6)	(2, 6)	(3, 6)	(4, 6)	(5, 6)	(6, 6)
TTTT				0	

What is the probability the sum of the dice is 4? This is straight up probability and is the sum of three cases, $f(1,3) + f(2,2) + f(3,1) = \frac{3}{36} = \frac{1}{12}$. What is the probability the sum of the dice is 4, given that the first die rolled is

2?

The marginal distribution at $f_X(2) = \frac{6}{36}$. The probability that the sum is a 4 and the first die is a 2 is $f(2,2) = \frac{1}{36}$. Thus, $f_{Y|X}(y|x) = \frac{f(2,2)}{f_X(2)} = \frac{\frac{1}{36}}{\frac{6}{36}} = \frac{1}{6}$. What is the probability the sum of the dice is 4, given that the first die rolled is 5? The marginal distribution remains the same at $f_X(2) = \frac{6}{36}$. However, f(5,-1) is not part of the domain of the joint function. Thus, f(5,-1) = 0.

So, Thus, $f_{Y|X}(y|x) = \frac{f(5,-1)}{f_X(2)} = \frac{0}{\frac{6}{36}} = 0.$

Example 2 We know that $f(x,y) = \begin{bmatrix} X|Y & 1 & 2 & 3 \\ 1 & .1 & .2 & .1 \\ 2 & .1 & .2 & .3 \end{bmatrix}$ is a pdf. What is the probability that x = 2 given that y = 2? The marginal distribution of $f_Y(2) = .2 + .2 = .4$. The probability that x = 2 = y is f(2,2) = .2. Thus, $f_{X|Y}(x|y) = \frac{f(2,2)}{f_Y(2)} = \frac{.2}{.4} = 0.5$.

Example 3 We know that f(x, y) = x + y is a pdf on $0 \le x \le 1$ and $0 \le y \le 1$. What is $P(x < \frac{1}{2} | y = \frac{1}{4})$? The marginal distribution of

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dx$$

= $\int_{0}^{1} x + y \, dx$
= $\frac{x^2}{2} + yx|_{0}^{1}$
= $y + \frac{1}{2}$.

$$= y + \frac{1}{2}.$$

So, $f_Y(\frac{1}{4}) = \frac{3}{4}.$ Now $f_{Y|X}(y|x) = \int_{-\infty}^{\infty} \frac{x+y}{\frac{3}{4}} = \frac{4}{3} \int_{0}^{\frac{1}{2}} x + \frac{1}{4} dx = \frac{4}{3} (\frac{x^2}{2} + \frac{x}{4}|_{0}^{\frac{1}{2}}) = \frac{4}{3} (\frac{(\frac{1}{2})^2}{2} + \frac{1}{2}) = \frac{4}{3} (\frac{\frac{1}{4}}{2} + \frac{1}{2}) = \frac{4}{3} (\frac{\frac{2}{4}}{4} + \frac{1}{2}) = \frac{4}{3} (\frac{1}{4}) = \frac{1}{3}$