1 Interlude: Different sizes of \mathbb{Z}^{+}and \mathbb{R}

What do we mean by the size of a set? When sets are finite the answer is easy since the size of a finite set is a number.. The order of a set $A,|A|$, is the number of elements it contains. Let $A=\{1,2,3\}, B=\{\alpha, \beta, \gamma\}$ and $C=\{\boldsymbol{\phi}, \diamond\}$. Note that $|A|=3=|B|$ so A and B have the same size. Since $|C|=2, A$ and C have different sizes.

When sets are infinite, things get trickier since ∞ is a concept rather than a number. We need a different approach that is still consistent with the concept of size of finite sets. A sturdier definition that works with both finite and infinite sets is to say that two sets have the same size if there exists a one-to-one and onto function between the sets. Note that one-to-one and onto functions are invertible. Hence order is a symmetric relation. Using this definition we show that $|A|=|B|$ since | A | | B |
| :--- | :--- | :--- |
| 1 | \rightarrow | α |
| 2 | \rightarrow | β |
| 3 | \rightarrow | γ | is a one-to-one and onto function. In contrast A and C have different sizes since we cannot map all three elements of A to C with a one-to-one function. Conversely, if we attempt to map C to A, no onto function exists. This approach works with sets of infinite size. We define the cardinality of the positive integers as countably infinite. Symbolically, $\left|\mathbb{Z}^{+}\right|=\aleph_{0}$ (aleph null).

Example 1 Show that $|\mathbb{Z}|=\aleph_{0}$. To do so we need to exhibit a one-to-one and onto function between \mathbb{Z}^{+}and \mathbb{Z}. This is easier than it sounds. Here's our function.

\mathbb{Z}^{+}	1	2	3	4	5	6	7	8	\ldots
\mathbb{Z}	0	1	-1	2	-2	3	-3	4	\ldots

Note that we could define the rule for this function $f(n)=\left\{\begin{array}{c}\frac{n}{2} \text { for even } n \\ -\left\lfloor\frac{n}{2}\right\rfloor \text { for odd } n\end{array}\right\}$ but we are not required to do so.

Example 2 Show that the size of the even positive integers is \aleph_{0}. All we do is exhibit an appropriate one-to-one and onto function.

\mathbb{Z}^{+}	1	2	3	4	5	6	7	8	\ldots
$2 \mathbb{Z}^{+}$	2	4	6	8	10	12	14	16	\ldots

Again, we could define the rule for this function $f(n)=2 n$ but we are not required to do so.

Remark 3 Note that order is a transitive operation. If $|A|=|B|$ and $|B|=$ $|C|$ then $|A|=|C|$.

Example 4 Show that the size of the even positive integers is the same as the size of the set of all positive integer multiples of 5 . We've already shown that $\left|2 \mathbb{Z}^{+}\right|=\aleph_{0}$. We only need to show that $\left|5 \mathbb{Z}^{+}\right|=\aleph_{0}$ and let function composition take care of the rest.

\mathbb{Z}^{+}	1	2	3	4	5	6	7	8	\ldots
$5 \mathbb{Z}^{+}$	5	10	15	20	25	30	35	40	\ldots
or $g(n)=5 n$. The function									

that maps $2 \mathbb{Z}^{+} \rightarrow 5 \mathbb{Z}^{+}$is $\left(g \circ f^{-1}\right)(n)=\frac{5 n}{2}$.

Exercise 5 Let's show that $\left|\mathbb{Q}^{+}\right|=\aleph_{0}$.
Now for the fun part! We need to show that the interval of real numbers $(0,1)$ does not have size \aleph_{0}. The proof is by contradiction. Assume that there is some one-to-one and onto function between \mathbb{Z}^{+}and $(0,1)$.

\mathbb{Z}^{+}	1	2	3	4	5	6	7	8	\ldots
$(0,1)$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	\ldots

If I can point to a number in $(0,1)$ that is not included in this ordered list then I know that no such one-to-one and onto function exists. The method to do so is known as Cantor's diagonal argument (https://www.slideshare.net/mattspaul/matthewinfinitypresentation).

a clip side

Cantor's Diagonal Argument

\mathbb{N}	\leftrightarrow	reals in $(0,1)$
1	\leftrightarrow	$.835987 \ldots$
2	\leftrightarrow	$.250000 \ldots$
3	\leftrightarrow	$.559423 \ldots$
4	\leftrightarrow	$.500000 . \ldots$
5	\leftrightarrow	$.728532 \ldots$
6	\leftrightarrow	$.845312 \ldots$
\vdots		\vdots
n	\leftrightarrow	$r_{1} r_{2} r_{3} r_{4} r_{5} \ldots r_{n} \ldots$
\vdots		\vdots

- For any hypothesised enumeration of the real numbers, we can show that there is a real which is not in that enumeration.
- We rely on forming a new real by the systematic alteration of the digits in the enumeration.

We will now point to a real number r in $(0,1)$ that is not in the alleged one-to-one and onto mapping. Let $r=0 . d_{1} d_{2} d_{3} \ldots d_{i} \ldots$, and thus $r \in(0,1)$. What is d_{i} ? We let $d_{i}=0$ unless the $i^{t h}$ digit of the real number mapped to integer i by the assumed one-to-one and onto mapping is 0 . If that is the case then $d_{i}=1$. For the alleged mapping above, $r=0.000100 \ldots$. Since r always differs by at least one digit from every real in the listing then r is not in the alleged one-to-one and onto function between \mathbb{Z}^{+}and $(0,1)$. Thus, the mapping is not onto and the interval of real numbers $(0,1)$ does not have size \aleph_{0}. We say that the size of $(0,1)$ is c (for continuum).

2 Exercises

1. Show that the size of the set of all positive integer multiples of 7 has cardinality \aleph_{0}.
2. Show that the size of the set of all positive integer multiples of k has cardinality \aleph_{0} for any $k \in \mathbb{Z}^{+}$.
3. Show that the size of the even integers is the same as the size of the set of all positive integer multiples of 5 .
4. Let $A=\{1,2\}$. Show that $|A| \neq|A \times A|$.
5. Show that $\left|\mathbb{Z}^{+}\right|=\left|\mathbb{Z}^{+} \times \mathbb{Z}^{+}\right|$. Hint! Use a technique of this section.
6. Give an example of sets A and B such that A is a proper subset of B but $|A|=|B|$.
