Mathematical Notation

$a \in S$	a is an element of S
$a \notin S$	a is a not an element of S
$T \supset S$	T contains S
$S \subset T$	S is contained in T S is a subset of T
$A \cup B$	A union B
$A \cap B$	A intersection B
$A-B$	$\{a \in A \mid a \notin B\}$
$A \times B$	$\{(a, b) \mid a \in A, b \in B\}$
\forall	For each or for all
$i f f$	If and only if
\exists	There exists
$\exists!$	There exists a unique
\ni	Such that
s.t.	Such that
$1-1$	One to one
\varnothing	Empty set or null
\Rightarrow	implies
q.e.d.	Indicates that a proof is complete
\square	Indicates that a proof is complete
$I / /$	Indicates that a proof is complete
$\|S\|$	Cardinality of the set $S ;$ that is, the number of elements in S
n	$\{1,2,3, \ldots, n\}$
$[n]$	$\{1,2,3, \ldots, n\}$
\mathbb{R}	Real numbers
\mathbb{N}	Positive intergers $1,2,3, \ldots$
Z	Integers $\ldots-3,-2,-1,0,1,2,3, \ldots$
\otimes	contradiction
$\rightarrow \leftarrow$	contradiction
S	Suppose

