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Abstract

In chess, the bishop is unique as it is locked to a single color on the
black and white board. This makes a closed tour in which the bishop visits
every square on the board exactly once and returns to its starting position
impossible. When can two bishops, one black and one white, legally visit
every square (of their respective colors) exactly once and return to their
starting positions? Such a tour will be called a closed monochromatic
bishop�s tour. In this paper necessary and su¢ cient conditions for the
existence of a monochromatic bishop�s tour for the rectangularm�n board
are proven. Furthermore, a monochromatic knight�s move is de�ned for
the three dimensional chessboard and a closed monochromatic knight�s
tour is provided for the cube of side 6.

1 Introduction

Puzzles on the chessboard have long been studied by mathematicians. The
survey papers Combinatorial Problems on Chessboards [2] and Combinatorial
Problems on Chessboards II [3] provide excellent introductions to the various
types of problems. The closed knight�s tour is one of these much studied and
famous problems in the area of chessboard puzzles. For which boards can a
knight legally visit every square exactly once and return to its starting position?
Schwenk completely answered this question for rectangular boards in 1991.

Theorem 1 An m�n chessboard with m � n has a closed knight�s tour unless
one or more of the following three conditions hold:

(a) m and n are both odd;
(b) m 2 f1; 2; 4g ;
(c) m = 3 and n 2 f4; 6; 8g :

The unique movement of the knight makes for interesting study while closed
tours for the king, queen and rook are trivial to construct. The bishop is color
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locked and clearly cannot tour every square on the board. Let�s change the
question slightly. When can two bishops, one black and one white, legally
visit every square (of their respective colors) exactly once and return to their
starting positions? Such a tour will be called a closed monochromatic bishops�
tour. Occasionally we will need a monochromatic tour that visits every square
exactly once but does not return to its starting position. Such a tour is an
open monochromatic bishops�tour. For this paper we will assume the top left
square is always black in an initial m� n chessboard with m � n.

2 The Case of m = 1; 2

For the 1�n chessboard, the bishops are unable to make a single move and no
closed monochromatic bishops�tour exists. For the 2�n chessboard the bishops
are able to move down the board but are unable to return without repeating
a square. Thus, except for the 2 � 2 chessboard, no closed monochromatic
bishops�tour exists for m = 2.

3 The Case of m = 3

No closed monochromatic bishops� tour exists for m = n = 3. While a
tour of the white squares is possible (and easy), the black squares prove to
be troublemakers. The four corner black squares each have only two possible
moves, one of which is to the center square. For a tour to exist each corner must
be preceded or succeeded by the center square. This forces the center square to
be visited more than once and no closed monochromatic bishops�tour exists.
Given the 3 � 4 board below, we can construct any length n � 0 mod 4

open monochromatic bishops�tour by placing copies of this board side by side.
Connect the black paths by moving from cell 4 of the left board to cell 1 of the
right board and from cell b of the left board to cell a of the right board. The
same moves will also connect the white paths. It is simple to connect the two
black paths on the rightmost side by constructing the 4� b edge. Connecting
the two white paths requires a bit more. First, delete the 2� 3 edge and create
the 2�4 and 3�b edges. We are now left with an open monochromatic bishops�
tour with ends on the leftmost side of the board at 1 and a for both the black
and white tours.
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Figure 1: The 3� 4 Board to Create
the 3� 4k Open Tour

To create a closed tour for any n mod 4, prepend the appropriate 3 � r
board for r � n mod 4 and follow the chart to close o¤ the open ends of the
tour.
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Figure 2: Boards to Prepend to
Open 3� n Tour

n mod 4 Delete Black Create Black
0 2� 3 1� 3; 2� a
1 none 1� y; a� y
2 none 1� t, t� y, r � y, a� r
3 none 1� y, t� y, j � t, j � r; a� r

n mod 4 Delete White Create White
0 none 1� a
1 1� 2 1� x; 1� z; 2� z; a� x
2 none 1� z, s� z, s� x, a� x
3 none 1� z, i� z, i� s, s� k, k � x, a� x

Each 3 � n board can be extended to a m � n board for m � 0 mod 3.
Note that every 3 � n board�s rightmost side is identical. Create two 3 � n
boards placed lengthwise. For both black and white tours delete the rightmost
3� 4 edges in the top tours and the rightmost 1� 2 edges in the bottom tours.
Now create the 1� 3 and 2� 4 edges. This yields a construction for all closed
monochromatic bishops�tours for the m�n board for m � 0 mod 3 and n � 4.

4 The Case of m = 4
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Figure 3: Base Cases for m = 4

Figure 3 provides us with �ve di¤erent closed monochromatic tours of length
4 and varying widths. As with the 3 � n boards, these base cases can easily
extend to a closed monochromatic bishops tour for any 4�n board. The chart
below indicates how to use the closed monochromatic bishops tour of the 4� 4
board to create a closed monochromatic bishops tour for any 4� n board.

n mod 4 Delete Black Create Black
0 7� 8 in left 4� n; 1� 2 in right 4� 4 1� 7; 2� 8
1 6� 7 in left 4� n; a� b in right 4� 4 6� b; 7� a
2 8� 9 in left 4� n; 1� 2 in right 4� 4 1� 9; 2� 8
3 11� 12 in left 4� n; a� b in right 4� 4 11� a; 12� h

n mod 4 Delete White Create White
0 g � h in left 4� n; a� b in right 4� 4 a� g; b� h
1 f � g in left 4� n; 1� 2 in right 4� 4 1� g; 2� f
2 h� i in left 4� n; a� b in right 4� 4 a� i; b� h
3 k � l in left 4� n; 1� 2 in right 4� 4 1� k; 2� l

Just like the 3� n boards, we can extend these 4� n boards to any m� n
board for m � 0 mod 4 and n � 4 except for the 4�4 board. This necessitated
the inclusion of the 4� 8 base case. Stack two boards top to bottom as before.
For the black bishop, delete 1 � 2 in the leftmost side of the bottom board.
In the top board, delete in the leftmost side the 9 � 10, 11 � 12, 13 � 14 or
15 � 16 (depending upon the base case) edge. Next construct the 1 � 10 and
2� 9 edges (or other edges depending upon the base case) to extend the black
bishops�tour. For the white bishop, remove the a � b edge from the leftmost
top board and the i� j, k � l, m� n or o� p (depending upon the base case)
edge. Next construct the a� j and b� i edges (or other edges depending upon
the base case) to extend the white bishops�tour. This construction would not
work on the 4� 4 board as we would need to delete the 7� 8 edge twice.
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5 Frobenius Combinations

If we can attach these 3�n and 4�n tours to each other then any m�n tour
for m � 6 can be constructed from the base boards as the Frobenius number
g(3; 4) = (3� 1) (4� 1) = 6. Fortunately, this is easy to accomplish. Place
the appropriate number of copies of the 4� n tours lengthwise followed by the
appropriate number of 3 � n tours. On the rightmost side of the boards for
the bottommost 4 � n board and uppermost 3 � n board follow the chart to
combine the tours. Note that the color of the squares for the 3� n board will
switch based on n mod 2.

n mod 4 Delete Black Create Black
0 1� 2 in 3� n, 15� 16 in 4� n 1� 15; 2� 16
1 2� 41 in 3� n, 4� 5in 4� n 2� 5; 4� 4
2 1� 2 in 3� n; 4� 5 in 4� n 1� 4; 2� 5
3 2� 4 in 3� n; 13� 14 in 4� n 2� 13, 4� 14

n mod 4 Delete White Create White
0 2� 4 in 3� n, e� f in 4� n 2� e; 4� f
1 3� 4 in 3� n, a� b in 4� n 3� a; 4� b
2 2� 4 in 3� n; b� c in 4� n 2� b; 4� c
3 1� 2 in 3� n; b� c in 4� n 1� b; 2� c

6 The Case of m = 5

Unfortunately, the Frobenius number g(3; 4) = 6 does nothing to achieve
closed monochromatic bishops�tours of the 5 � n board. So, once again, we
present base cases and a method to extend them to any 5� n board.

1Since this occurs at the right-most end of the 3 � n boards the 2 � 4 edge does exist as
outlined when creating the closed 3� n boards:
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Figure 4: Base Cases for m = 5

n mod 4 Delete Black Create Black
0 2� 3 left 5� n; 7� 8 right 5� 4 2� 7; 3� 8
1 3� 4 left 5� n; i� h right 5� 4 3� i; 4� h
2 7� 8 left 5� n; 7� 8 right 5� 4 7� 7; 8� 8
3 13� 14 left 5� n; i� h right 5� 4 13� i; 14� h

n mod 4 Delete White Create White
0 b� c left 5� n; i� h right 5� 4 b� i; c� h
1 g � h left 5� n; 7� 8 right 5� 4 7� g; 8� h
2 i� h left 5� n; i� h right 5� 4 h� h; i� i
3 j � k left 5� n; 7� 8 right 5� 4 7� j; 8� k

7 Summary and Future Work

The above work leads to a very similar looking theorem for bishops as the
one proven by Schwenk for knights.

Theorem 2 An m � n chessboard with m � n has a closed monochromatic
bishops�tour unless one of the following three conditions hold:

(a) m = 1;
(b) m = 2 and n 6= 2;
(c) m = 3 and n = 3:

Bishops on the m � n chessboard is not the only setting where a closed
monochromatic tour makes sense. Generalizing the square chessboard to a
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three-dimensional cube also leads naturally to a closed monochromatic tour
problem not only for bishops but also for knights. The extension of the bishops�
movement into three dimensions is easy to make and clearly still color locked.
The extension of a knight�s move is not as obvious. One option is to keep the
same 1 � 2 move of a knight which makes the knight alternate colors on each
move. In 2006, Qing and Watkins proved the existence of a closed knight�s
tour of the six exterior faces of the i� j� k rectangular prism in [5] while using
the 1 � 2 knight. In the same paper, Qing and Watkins provide a 1 � 2 � 4
knight�s tour of the cube of side 8. In 2007, DeMaio proved a closed knight�s
tour in the cube of side n using the 1� 2 knight exists if and only if n � 4 and
even [1]. Why do neither articles use the 1�2�3 knight? Because the knight�s
moves in the cube do not alternate color with the 1�2�3 knight! Just like the
bishop, the 1 � 2 � 3 knight is color locked. The next step in this research of
monochromatic tours is to determine which cubes admit closed monochromatic
tours with the 1� 2� 3 knight. As a teaser, I leave you with an example of a
closed monochromatic 1� 2� 3 knight�s tour of the cube of side 6, the smallest
cube that admits such a tour. Given the symmetry of the cube only the black
tour is given below. Rotate the cube 90 degrees for the white tour.

47 65 6
106 74 92

77 99 103
54 1 33

24 89 26
37 12 45

108 78 41
59 25 67

27 46 13
84 93 97

75 105 71
2 19 55

Level 1 Level 2
16 91 34

104 76 101
38 80 44

66 60 7
11 50 36

95 21 87

73 98 81
53 42 64

48 88 5
107 102 90

58 100 9
61 23 32

Level 3 Level 4
28 68 14

85 40 79
94 96 72

3 62 51
20 56 18

83 70 30

63 52 43
57 17 8

15 31 35
69 29 82

39 86 22
49 10 4

Level 5 Level 6
Figure 5: A Closed Monochromatic 1� 2� 3 Knight�s Tour

in the Cube of Side n = 6

7



References

[1] J. DeMaio, Which Chessboards have a Closed Knight�s Tour within the
Cube?, The Electronic Journal of Combinatorics, Volume 14, (2007) R32

[2] G. H. Fricke, S. M. Hedetniemi, S. T. Hedetniemi, A. A. McRae, C. K.
Wallis, M. S. Jacobson, W. W. Martin, and W. D. Weakly, Combinatorial
Problems on Chessboards: A Brief Survey. Graph Theory, Combinatorics
and Applications 1 (1995) 507-528.

[3] S. M. Hedetniemi, S. T. Hedetniemi, R. Reynolds, Combinatorial Prob-
lems on Chessboards: II, Domination in Graphs; Advanced Topics, Marcel
Dekker, Inc., New York, 1998.

[4] A. J. Schwenk, Which Rectangular Chessboards have a Knight�s Tour?
Mathematics Magazine 64:5 (December 1991) 325-332.

[5] Y. Qing and J.J. Watkins, Knight�s Tours for Cubes and Boxes, Congressus
Numerantium 181 (2006) 41-48

[6] J. J. Watkins, Across the Board: The Mathematics of Chessboard Problems,
Princeton University Press, Princeton, 2004.

[7] Weisstein, Eric W. "Frobenius Number." From MathWorld�A Wolfram Web
Resource. http://mathworld.wolfram.com/FrobeniusNumber.html

8


