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Introduction
The Stirling number of the second kind,

n
k or Sn,k, is the number of partitions

of an n-element set into k non-empty
subsets.

The symbol, n
k , is read as ’n subset k.’

For example, 4
2   7 since there exist

seven different ways to partition the set
S  1,2,3,4 into two non-empty subsets.

1,2,3,4 1,2,4,3 1,3,4,2 2,3, 4,1
1,2,3, 4 1,3,2, 4 1,4,2,3



The general formula for computing the
Stirling number of the second kind is

n
k  1

k! ∑
i0

k

−1 i k
i k − in     1

and a very frequently used recursive
identity is

n
k  n − 1

k − 1  k n − 1
k .     2

n
k 1 2 3 4 5 6 7 8 9 10 11 12

1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1
8 1 127 966 1701 1050 266 28 1
9 1 255 3025 7770 6951 2646 462 36 1
10 1 511 9330 34105 42525 22827 5880 750 45 1
11 1 1023 28501 145750 246730 179487 63987 11880 1155 55 1
12 1 2047 86526 611501 1379400 1323652 627396 159027 22275 1705 66 1

Some Initial Values of n
k



How about searching Stirling numbers of
the second kind for primes?
A cursory glance at a table of Stirling
numbers of the second kind quickly yields
some prime numbers and a search does
not seem to be a pointless exercise.
A Stirling prime (of the second kind) is a
prime p such that p  Sn,k for some
integers n and k.
Thus, 6

2   31 and 16
4   171,798,901

are both examples of Stirling primes (of the
second kind).
How might we reasonably search through
the sequence? We’ll use the time honored
technique of throwing out as many known
composites as possible.



Divisibility of n
k

by primes

In order to show that n
k is composite it

is unnecessary to determine the complete
prime factorization of n

k .
Just knowing that a single small (relative to
the size of n

k ) prime p divides n
k will

be sufficient to disprove primality.
The rate of growth of n

k quickly
precludes us from concern that n

k  p
for some small prime p for k ≥ 3 as in the
case of 3

2   3
2   3.



Theorem 1: If p is prime then p| p
k for all

2 ≤ k ≤ p − 1. Furthermore, p ∤ p
1 , p

p .

Theorem 1 shows that 5 divides 5
2 , 5

3 
and 5

4  but not 5
1 , 5

5 .
In fact, divisibility by 5 can be extended
further past row five in our table by making
iterated applications of Equation 2.



Theorem 2: If p is prime then p| p1
k1 for

all 2 ≤ k ≤ p − 1. Furthermore
p1

2 ≡ 1 mod p.

Theorem 2 now shows that 5 divides 6
3 ,

6
4  and 6

5  but 5 ∤ 6
2 .

Of course the same recursive Equation 2
can be applied not just to p1

k but to
pj
k for j ≥ 2.

Now, however, for each increase in the
size of j, one fewer of pj

kj is divisible by
p due to the fact that two previous terms
divisible by p are needed for each
successive term divisible by p. Extending
Theorem 2 and its proof technique yields
the next theorem.



Theorem 3: If p is prime then p| pj
kj for

all 1 ≤ j ≤ p − 2 and 2 ≤ k ≤ p − j.
Furthermore pj

j1 ≡ 1 mod p for all
2 ≤ j ≤ p − 2.
Theorem 3 iteratively shows that 5 divides

6
3 , 6

4 , 6
5 , 7

4 , 7
5  and 8

5  but
5 ∤ 6

2 , 7
3  and 8

4 .
Divisibility by 5 does not stop here. The
same pattern now repeats itself again and
again.
Corollary 1:If p is prime then p| pip−1

k
for all 2 ≤ k ≤ p − 1 and i ∈ ℤ.



Theorem 1 shows that 5 divides 5
2 , 5

3 
and 5

4 . Corollary 1 extends the result to
show that 5 also divides 9

2 , 9
3  and

9
4 , and 13

2 , 13
3  and 13

4  and so on.

Continued applications of Equation 2 and
slight modifications of Theorems 2 and 3
show that the entire pattern is replicated
infinitely many times.
Corollary 2 If n is a composite number then
there exists k, 2 ≤ k ≤ n − 1 such that
n ∤ n

k .
Due to Corollary 2 Theorem 1 can now be
improved!
The positive integer n is a prime number if
and only if n| n

k for all 2 ≤ k ≤ n − 1.



Primality of n
k

In light of all this divisibility it might appear
that n

k is always composite.
This is certainly not true. In fact the
collection of values of n such that n

2  is
prime is closely related to a quite well
known collection of primes. For all n,

n
2   2n−1 − 1. Hence, for any Mersenne

prime Mp, p1
2  Mp and n

2  is
composite for all other values.
This immediately demonstrates the
existence of 44 (as of July 7, 2008)
different Stirling Numbers of the Second
Kind that are prime.



Are there other prime Stirling Numbers of
the second kind?

A brute force search yields the
aforementioned 16

4 .

However, brute force quickly stops yielding
results.

Clearly there is no need to check
n
1   n

n   1. Furthermore
n

n−1   n
2   nn−1

2 which is clearly
composite except at n  3.

Turning our attention to the theorems of
the previous section yields a sieve
technique to cast out composites.



With very little computational effort we
know many n

k that must be divisible by
each small prime p and can remove such

n
k from consideration for primality

testing.

For example for p  5 we cast out the
following values in bold.

n
k 1 2 3 4 5 6 7 8 9 10 11 12

1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1

6 1 31 90 65 15 1
7 1 63 301 350 140 21 1

8 1 127 966 1701 1050 266 28 1

9 1 255 3025 7770 6951 2646 462 36 1
10 1 511 9330 34105 42525 22827 5880 750 45 1

11 1 1023 28501 145750 246730 179487 63987 11880 1155 55 1

12 1 2047 86526 611501 1379400 1323652 627396 159027 22275 1705 66 1

Values of n
k Relative to Divisibilty by 5



Not every n
k divisible by 5 is cast out

with this process but we can rid ourselves
of many composite n

k .

Repeating this process for numerous small
primes significantly reduces the number of

n
k to check for primality.

A quick sieve of n
k up to n  24 yields

the table below. If n
k has multiple prime

divisors, only the largest prime is entered
into its cell in the table.

Of the 300 entries in this table, we are left
with only 9 candidates to check for
primality for 3 ≤ k ≤ n − 2. Of those 9
candidates, only 16

4  is prime.



 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1                        
2 1 1                       
3 1 3 1                      
4 1 M 3 1                     
5 1 5 5 5 1                    
6 1 M 5 5 5 1                   
7 1 7 7 5 5 7 1                  
8 1 M 7 7 5 7 7 1                 
9 1 M  7 7 7 7 B 1                
10 1 M E  7 7 7  B 1               
11 1 11 11 11 11 7 7 11 11 11 1              
12 1 M 11 11 11 11 7 11 11 11 11 1             
13 1 13 13 11 11 11 11 11 11 11 11 13 1            
14 1 M 13 13 11 11 11 11 11 11 11 13 13 1           
15 1 M  13 13 11 11 11 11 11 11 13 13 B 1          
16 1 M E  13 13 11 11 11 11 11 13 13  B 1         
17 1 17 17 17 17 13 13 11 11 11 11 13 13 17 17 17 1        
18 1 M 17 17 17 17 13 13 11 11 11 13 13 17 17 17 17 1       
19 1 19 19 17 17 17 17 13 13 11 11 13 13 17 17 17 17 19 1      
20 1 M 19 19 17 17 17 17 13 13 11 13 13 17 17 17 17 19 19 1     
21 1 M  19 19 17 17 17 17 13 13 13 13 17 17 17 17 19 19 B 1    
22 1 M E  19 19 17 17 17 17 13 13 13 17 17 17 17 19 19  B 1   
23 1 23 23 23 23 19 19 17 17 17 17 13 13 17 17 17 17 19 19 23 23 23 1  
24 1 M 23 23 23 23 19 19 17 17 17 17 13 17 17 17 17 19 19 23 23 23 23 1 
 

Known Composite Values of n
k

After sieving out known composites, an
exhaustive search of n

k for
1 ≤ n ≤ 100000 and 1 ≤ k ≤ 6 yielded three
additional primes: 40

4 , 1416
4  and

10780
4 .



Future Work
It seems unusual that we found Stirling
primes of the form n

2  and n
4  but not

n
3 .

Is there perhaps some reason that n
3  is

always composite?

By Equation 2, n
3   5 ∗ 2n−3 − 4  9 n−2

3 
and since 4

3   6 then n
3  is always

even for all even n ≥ 4.
Similarly n

3   65 ∗ 2n−5 − 40  81 n−4
3 

and 5
3   25 shows that

n
3  ≡ 0 mod 5 for n ≡ 1 mod 4.

Hence, n
3  can be prime only for

n ≡ 3 mod 4.



But so far, no prime values of n
3  have

been located.
Nor does an obvious divisor pattern for

n
3  jump out for n ≡ 3 mod 4.

The factoring of 15
3   227 ∗ 10463 and

95
3   12707273 ∗ 295097034961

∗94265058593107474994927717 gives a
glimmer of hope that n

3  may be prime for
some value of n.



Can we extend the divisibility pattern of
Theorems 1, 2 and 3 widthwise across the
table of Stirling numbers also? Perhaps.
But it will not be as simple as extending
this pattern lengthwise to an if and only if
result as we did with Corollary 1. Such
theorems would allow us to throw out more
known composite values of n

k extend a
search with larger values of k.


