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Introduction

The Stirling number of the second kind,
{1} or S(n,k), is the number of partitions

of an n-element set into k non-empty

subsets.

The symbol, { | }, is read as 'n subset k.

For example, {3 } = 7 since there exist

seven different ways to partition the set
S ={1,2,3,4} into two non-empty subsets.
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The general formula for computing the

Stirling number of the second kind is
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and a very frequently used recursive
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{1} 1 5 6 9 10 |11]12
1 1

2 1

3 1

4 1 1

5 1115 |25 10 1

6 1031 |90 65 15 1

7 1/63 301 |350 140 21 1

8 1127 1966 |1701 | 1050 266 28 1

9 1255 3025 | 7770 | 6951 2646 462 36 1

10 |1 511 | 9330 |34105 |42525 |22827 5880 | 750 45 1

11 |1 1023|28501 | 145750 | 246730 | 179487 | 63987 | 11880 |1155 |55 |1

12 |1 204786526 | 611501 | 1379400 | 1323652 | 627396 | 159027 | 22275 | 1705 | 66 | 1

Some Initial Values of {E}




How about searching Stirling numbers of
the second kind for primes?

A cursory glance at a table of Stirling
numbers of the second kind quickly yields
some prime numbers and a search does
not seem to be a pointless exercise.

A Stirling prime (of the second kind) is a
prime p such that p = S(n,k) for some
Integers n and k.

Thus, {5} =3land {¥} = 171,798,901
are both examples of Stirling primes (of the
second kind).

How might we reasonably search through
the sequence? We'll use the time honored
technique of throwing out as many known
composites as possible.



Divisibility of {E}
by primes

In order to show that { ! } is composite it

IS unnecessary to determine the complete
prime factorization of { 7 }.

Just knowing that a single small (relative to
the size of { | }) prime p divides { | } will
be sufficient to disprove primality.

The rate of growth of { ' } quickly
precludes us from concern that {E} =p

for some small prime p for k > 3 as in the
caseof {3} = (3)=3.



Theorem 1: If pis prime then p|{ | } for all

2 <k <p-1. Furthermore, p f {}} {} }.

Theorem 1 shows that 5 divides {3 }, {3}
and {3} butnot {3}, {2 }.
In fact, divisibility by 5 can be extended

further past row five in our table by making
iterated applications of Equation 2.



Theorem 2: If p is prime then p|{ }'; } for
all 2 <k <p-1. Furthermore

{pgl} = 1 mod p.
Theorem 2 now shows that 5 divides { 3 },
{2} and {g} butb f {g}

Of course the same recursive Equation 2
can be applied not just to { ";" } but to

{p;j}forj > 2.

Now, however, for each increase In the
size of j, one fewer of { ﬁi} } is divisible by
p due to the fact that two previous terms
divisible by p are needed for each
successive term divisible by p. Extending

Theorem 2 and its proof technique yields
the next theorem.



Theorem 3: If p is prime then p|{ E:j } for
all<j<p-2and2<k<p-j.
Furthermore {fﬁ} = 1 mod p for all
2<]<p-2

Theorem 3 iteratively shows that 5 divides
{3h A {erAdar {{}Fand {{} but
5135 {irand{;}.

Divisibility by 5 does not stop here. The
same pattern now repeats itself again and
again.

Corollary 1:If p is prime then p|{ p”(E‘l) }
forall2<k<p-1landie 7.



Theorem 1 shows that 5 divides {3 }, {3}
and <{ j +. Corollary 1 extends the result to
show that 5 also divides {3 }, {3} and

{3y, and {¥}, {¥}and {%} and so on.

Continued applications of Equation 2 and
slight modifications of Theorems 2 and 3
show that the entire pattern is replicated

Infinitely many times.

Corollary 2 If n is a composite number then
there exists k, 2 < k < n -1 such that

nf
Due to Corollary 2 Theorem 1 can now be
Improved!

The positive integer n is a prime number if
and only if n|{ " } forall2 <k <n-1.



Primality of {7 }

In light of all this divisiblility it might appear
that { | } is always composite.

This iIs certainly not true. In fact the
collection of values of n such that {7 } is
prime is closely related to a quite well

known collection of primes. For all n,
{}} =2"1-1. Hence, for any Mersenne

prime Mp, { *;* } = My and {}§ } is
composite for all other values.

This immediately demonstrates the
existence of 44 (as of July 7, 2008)

different Stirling Numbers of the Second
Kind that are prime.



Are there other prime Stirling Numbers of
the second kind?

A brute force search yields the
aforementioned { % }.

However, brute force quickly stops yielding
results.

Clearly there is no need to check
{1} =41} =1 Furthermore

{3 =(1) = 22 which is clearly

composite except at n = 3.

Turning our attention to the theorems of
the previous section yields a sieve
technique to cast out composites.



With very little computational effort we
know many { @ } that must be divisible by

each small prime p and can remove such
{7 } from consideration for primality

testing.

For example for p = 5 we cast out the
following values in bold.

{1}y 1]2 3 4 5 6 7 8 9 10 |11 /12
1 1

2 1)1

3 1

4 1|7 1

5 1115 |25 10 1

6 1/31 |90 65 15 1

7 1/63 301 |350 140 21 1

8 1127 |966 |1701 | 1050 266 28 1

9 1255 |3025 | 7770 | 6951 2646 462 36 1

10 |1/511 | 9330 | 34105 |42525 | 22827 5880 |750 45 1

11 |1 /102328501 | 145750 | 246730 | 179487 | 63987 |11880 | 1155 |55 |1
12 | 1| 2047 86526 611501 | 1379400 | 1323652 | 627396 | 159027 | 22275 | 1705 | 66 | 1

Values of { ! } Relative to Divisibilty by 5




Not every { | } divisible by 5 is cast out

with this process but we can rid ourselves
of many composite { | }.

Repeating this process for numerous small
primes significantly reduces the number of
{7 } to check for primality.

A quick sieve of {7 } up to n = 24 yields
the table below. If { ] } has multiple prime

divisors, only the largest prime is entered
Into its cell in the table.

Of the 300 entries Iin this table, we are left
with only 9 candidates to check for
primality for 3 <k <n-2. Ofthose 9
candidates, only { ¥ } is prime.



112 |3 |4 |5 |6 |7 |8 ]9 |10]11]12]13|14)115|16)17|18)19|20|21|22|23|24
111
2 |11
3 113 |1
4 111M]3 |1
5 |[1]5 |5 |5 |1
6 |[1|M|5 |5 |5 |1
7 11|77 |5 |5 |7 ]1
8 1M |7 |7 |5 |7 |7 ]1
9 |[1|M 717 |7 17 |B |1
10/1|M |E 7|7 |7 B |1
111111111117 |7 |11]11|11]1
121 |M[11 1111117 |11)11 11111
131113131111 )11|11)11|11|11|11|13]|1
1411 /M[13]|13|11]11)11 /11|11 (11(11]13|13]|1
1511 M 1311311111111 ]11)11]13]13|B |1
16|11 | M |E 131131111 (11)11(11]13]13 B |1
1711717171713 13|11 )11 |11 |11 ]13|13|17|17]|17]|1
18|11 |M 171717171313 |11 |11 |11 13|13 |17 |17 17|17 |1
1911]19(19|17 1717|1713 |13 |11 (11|13 |13[17[17]|17]17|19]|1
2011/ M 1919|1717 |17 (1713|1311 13|13 |17 |17 ]17]17]19]19]1
211 | M 19(19 17|17 |17 1713|1313 (13|17 |17|17|17]19]19|B |1
22|1|M|E 19119 (17|17 (17|17 (13|13 |13 |17 |17 |17|17]19| 19 B |1
2311123232323 (191917171717 ]13 13|17 |17 |17]17]19]19]23]23|23]|1
2411 M |23]123]123123|19(19|17 |17 |17 |17 |13 1717|1717 ]19]19|23|23]|23]23]|1

Known Composite Values of { | }

After sieving out known composites, an
exhaustive search of { ? } for

1<n<100000and1<k<6

additional primes: { %}, {*4* } and

{ 10280 } _

yielded three




Future Work

It seems unusual that we found Stirling
primes of the form { ] } and { } but not

{37
Is there perhaps some reason that { ; } is
always composite?

By Equation 2, {]} =5%2"3-4+9{"*}
and since {; } = 6 then {]} is always
even for all even n > 4.

Similarly {]} = 65% 2" —-40+81{"*}
and {3} = 25 shows that

{3 =0mod 5forn =1 mod 4.

Hence, { ; } can be prime only for
n =3 mod 4.



But so far, no prime values of { ; } have
been located.

Nor does an obvious divisor pattern for
{7} jump out for n = 3 mod 4.

The factoring of { 3> } = 227 * 10463 and
{%} = 12707273 % 295097034961

x94265058593107474994927717 gives a
glimmer of hope that { ; } may be prime for

some value of n.



Can we extend the divisibility pattern of
Theorems 1, 2 and 3 widthwise across the
table of Stirling numbers also? Perhaps.
But it will not be as simple as extending
this pattern lengthwise to an if and only if
result as we did with Corollary 1. Such
theorems would allow us to throw out more
known composite values of { | } extend a

search with larger values of k.



