
Stirling Numbers of the Second Kind and
Primality

Joe DeMaio
Department of Mathematics and Statistics

Kennesaw State University, Kennesaw, Georgia, 30144, USA

jdemaio@kennesaw.edu

770 423-6568

Stephen Touset
stephen@touset.org

April 21, 2008

Abstract

A Stirling number of the second kind is a combinatorial function which
yields interesting number theoretic properties with regard to primality.

The Stirling number of the second kind, S(n; k) = 1
k!

kP
i=0

(�1)i
�
k
i

�
(k � i)n,

counts the number of partitions of an n-element set into k non-empty
subsets. A Stirling prime (of the second kind) is a prime p such that
p = S(n; k) for some integers n and k. The relationship between Mersenne
primes and Stirling primes will be shown. Divisibility theorems with re-
gard to primality will be stated and used to devise algorithms for acceler-
ated searching of Stirling primes. Search results for 1 � n � 100000 and
1 � k � 6 will be presented.
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1 Introduction

Stirling numbers of the second kind are combinatorial functions similar to
Bell numbers. The Bell number, Bn, enumerates the number of partitions of n
elements into non-empty subsets. The Stirling number of the second kind,

�
n
k

	
or S (n; k) 1 , is the number of partitions of an n-element set into k non-empty

1For the purposes of this paper, the more descriptive notation for Stirling numbers of the
second kind,

�n
k

	
, will be utilized. Stirling numbers of the second kind count the number

of partitions of an n-element set into k non-empty subsets. Stirling numbers of the �rst
kind count the number of di¤erent permutations of n elements into k disjoint cycles. First
devised by Karamata [1] and practiced by Knuth [2],

�n
k

	
, provides a visual cue to di¤erentiate
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subsets. Thus, Bn =
nP
k=1

�
n
k

	
. The symbol,

�
n
k

	
, is read as �n subset k.� For

example,
�
4
2

	
= 7 since there exist seven di¤erent ways to partition the set

S = f1; 2; 3; 4g into two non-empty subsets.

áá1,2,3â,á4ââ áá1,2,4â,á3ââ áá1,3,4â,á2ââ áá2,3,4â,á1ââ
áá1,2â,á3,4ââ áá1,3â,á2,4ââ áá1,4â,á2,3ââ

All Partitions of S = f1; 2; 3; 4g into Two Non-empty
Subsets

The general formula for computing the Stirling number of the second kind
is �

n

k

�
=
1

k!

kX
i=0

(�1)i
�
k

i

�
(k � i)n (1)

and a very frequently used recursive identity is�
n

k

�
=

�
n� 1
k � 1

�
+ k

�
n� 1
k

�
: (2)

n
k

1 2 3 4 5 6 7 8 9 10 11 12

1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1
8 1 127 966 1701 1050 266 28 1
9 1 255 3025 7770 6951 2646 462 36 1
10 1 511 9330 34105 42525 22827 5880 750 45 1
11 1 1023 28501 145750 246730 179487 63987 11880 1155 55 1
12 1 2047 86526 611501 1379400 1323652 627396 159027 22275 1705 66 1

Some Initial Values of
�
n
k

	
The sequence of Bell numbers has been searched for primes [7].2 How about

searching Stirling numbers of the second kind for primes? A cursory glance at a
table of Stirling numbers of the second kind quickly yields some prime numbers

between itself and Stirling numbers of the �rst kind,
�n
k

�
. This notation is much more distinct

and easier to remember than the standard S(n; k) and s(n; k).
2The Bell number, Bn, is known to be prime for n = 2; 3; 7; 13; 42; 55; 2841. The 6531

digit integer B2841 was discovered as a probable prime in 2002 and proven prime in 2004.
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and a search does not seem to be a pointless exercise. A Stirling prime (of
the second kind) is a prime p such that p = S(n; k) for some integers n and k.
Thus,

�
6
2

	
= 31 and

�
16
4

	
= 171798901 are both examples of Stirling primes (of

the second kind).
How might we reasonably search through the sequence? We�ll use the time

honored technique of throwing out as many known composites as possible.

2 Divisibility of
�
n
k

	
by primes

In order to show that
�
n
k

	
is composite it is unnecessary to determine the

complete prime factorization of
�
n
k

	
. Just knowing that a single small (relative

to the size of
�
n
k

	
) prime p divides

�
n
k

	
will be su¢ cient to disprove primality.

The rate of growth of
�
n
k

	
quickly precludes us from concern that

�
n
k

	
= p for

some small prime p for k � 3 as in the case of
�
3
2

	
=
�
3
2

�
= 3.

Theorem 1 If p is prime then pj
�
p
k

	
for all 2 � k � p � 1. Furthermore,

p -
�
p
1

	
;
�
p
p

	
.

Proof. We wish to show that
�
p
k

	
� 0 mod p for any prime p and 2 � k � p�1.

Since k � p � 1, p - k! and it will su¢ ce to show that
kP
i=0

(�1)i
�
k
i

�
(k � i)p �

0. By Fermat�s Little Theorem, ap�1 � 1 mod p and ap � a mod p for

all a and prime p. Thus
kP
i=0

(�1)i
�
k
i

�
(k � i)p �

kP
i=0

(�1)i
�
k
i

�
(k � i)mod p.

Note that
�
k
i

�
(k � i) = k

�
k�1
i

�
and

kP
i=0

(�1)i
�
k
i

�
(k � i) �

kP
i=0

(�1)i k
�
k�1
i

�
�

k
kP
i=0

(�1)i
�
k�1
i

�
mod p. Since

�
k�1
k

�
= 0 the last term can be dropped and

rewritten as k
k�1P
i=0

(�1)i
�
k�1
i

�
. This sum

k�1P
i=0

(�1)i
�
k�1
i

�
= 0 by the binomial

theorem. Finally, since
�
p
1

	
=
�
p
p

	
= 1, it is clear that p divides neither.

Theorem 1 shows that 5 divides
�
5
2

	
,
�
5
3

	
and

�
5
4

	
but not

�
5
1

	
,
�
5
5

	
. In fact,

divisibility by 5 can be extended further past row �ve in our table by making
iterated applications of Equation 2.

Theorem 2 If p is prime then pj
�
p+1
k+1

	
for all 2 � k � p � 1. Furthermore�

p+1
2

	
� 1 mod p.

Proof. Since pj
�
p
k

	
for all 2 � k � p � 1 then pj

�
p+1
k+1

	
=
�
p
k

	
+ (k + 1)

�
p
k+1

	
for 2 � k � p� 2. For k = p� 1, pj

�
p+1
k+1

	
since pj

�
p
k

	
and pj (k + 1). Finally,�

p+1
2

	
=
�
p
1

	
+ 2
�
p
2

	
= 1 + 2

�
p
2

	
. Since pj

�
p
2

	
then

�
p+1
2

	
� 1 mod p.
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Theorem 2 now shows that 5 divides
�
6
3

	
,
�
6
4

	
and

�
6
5

	
but 5 -

�
6
2

	
. Of

course the same recursive Equation 2 can be applied not just to
�
p+1
k

	
but to�

p+j
k

	
for j � 2. Now, however, for each increase in the size of j, one fewer of�

p+j
k+j

	
is divisible by p due to the fact that two previous terms divisible by p

are needed for each successive term divisible by p. Extending Theorem 2 and
its proof technique yields the next theorem.

Theorem 3 If p is prime then pj
�
p+j
k+j

	
for all 1 � j � p�2 and 2 � k � p� j.

Furthermore
�
p+j
j+1

	
� 1 mod p for all 2 � j � p� 2.

Proof of Theorem 3 is similar to the proof of Theorem 2 and yields no new
insight. Theorem 3 iteratively shows that 5 divides

�
6
3

	
,
�
6
4

	
,
�
6
5

	
,
�
7
4

	
,
�
7
5

	
and�

8
5

	
but 5 -

�
6
2

	
;
�
7
3

	
and

�
8
4

	
. Divisibility by 5 does not stop here. The same

pattern now repeats itself again and again.

Corollary 1 If p is prime then pj
�
p+i(p�1)

k

	
for all 2 � k � p� 1 and i 2 Z+.

Proof. Note that (k � 1)p+i(p�1) � (k � 1)p (k � 1)(p�1)
i

� (k � 1)p mod p by
Fermat�s Little Theorem and the proof is now reduced to that of Theorem 1.
Theorem 1 shows that 5 divides

�
5
2

	
,
�
5
3

	
and

�
5
4

	
. Corollary 1 extends

the result to show that 5 also divides
�
9
2

	
,
�
9
3

	
and

�
9
4

	
; and

�
13
2

	
,
�
13
3

	
and�

13
4

	
and so on. Continued applications of Equation 2 and slight modi�cations

of Theorems 2 and 3 show that the entire pattern is replicated in�nitely many
times.

Corollary 2 If n is a composite number then there exists k; 2 � k � n�1 such
that n -

�
n
k

	
.

Proof. Let p be any prime factor of n and let j = n� p. Since n is composite,
2 � n�p � n�2. Thus, by Theorem 3, 1 �

�
p+j
j+1

	
=
�
p+(n�p)
(n�p)+1

	
=
�
n
k

	
mod p.

Hence p -
�
n
k

	
. Since pjn, it quickly follows that n -

�
n
k

	
. Furthermore, since

n� p � n� 2 then 2 � k = (n� p) + 1 � n� 1.

Due to Corollary 2 Theorem 1 can now be improved.

Theorem 4 The positive integer n is a prime number if and only if nj
�
n
k

	
for

all 2 � k � n� 1.

3 Primality of
�
n
k

	
In light of all this divisibility it might appear that

�
n
k

	
is always composite.

This is certainly not true. In fact the collection of values of n such that
�
n
2

	
is prime is closely related to a quite well known collection of primes. For all n,�
n
2

	
= 2n�1 � 1. Hence, for any Mersenne prime Mp,

�
p+1
2

	
= Mp and

�
n
2

	
is

4



composite for all other values. This immediately demonstrates the existence3

of 44 di¤erent Stirling Numbers of the Second Kind that are prime. The search
for Mersenne primes has an extensive mathematical history and does not need
to be discussed here.
Are there other prime Stirling Numbers of the second kind? A Brute force

search yields the aforementioned
�
16
4

	
. However, brute force quickly stops

yielding results. Clearly there is no need to check
�
n
1

	
=
�
n
n

	
= 1. Furthermore�

n
n�1

	
=
�
n
2

�
= n(n�1)

2 which is clearly composite except at n = 3. Turning
our attention to the theorems of the previous section yields a sieve technique
to cast out composites. With very little computational e¤ort we know many�
n
k

	
that must be divisible by each small prime p and can remove such

�
n
k

	
from consideration for primality testing. For example for p = 5 we cast out the
following values in bold.

n
k

1 2 3 4 5 6 7 8 9 10 11 12

1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1
8 1 127 966 1701 1050 266 28 1
9 1 255 3025 7770 6951 2646 462 36 1
10 1 511 9330 34105 42525 22827 5880 750 45 1
11 1 1023 28501 145750 246730 179487 63987 11880 1155 55 1
12 1 2047 86526 611501 1379400 1323652 627396 159027 22275 1705 66 1

Values of
�
n
k

	
Relative to Divisibilty by 5

Not every
�
n
k

	
divisible by 5 is cast out with this process but we can rid

ourselves of many composite
�
n
k

	
. Repeating this process for numerous small

primes signi�cantly reduces the number of
�
n
k

	
to check for primality. A quick

sieve of
�
n
k

	
up to n = 24 yields the table below. If

�
n
k

	
has multiple prime

divisors, only the largest prime is entered into its cell in the table. The character
M represents a Mersenne prime that need not be checked. The character
B represents the Stirling number

�
n
n�1

	
=
�
n
2

�
= n(n�1)

2 which need not be
checked. Of the 300 entries in this table, we are left with only 9 candidates
to check for primality for 3 � k � n � 2. Of those 9 candidates, only

�
16
4

	
is

prime.

3As of February 12, 2008
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1
2 1 1
3 1 3 1
4 1 M 3 1
5 1 5 5 5 1
6 1 M 5 5 5 1
7 1 7 7 5 5 7 1
8 1 M 7 7 5 7 7 1
9 1 M 7 7 7 7 B 1
10 1 M E 7 7 7 B 1
11 1 11 11 11 11 7 7 11 11 11 1
12 1 M 11 11 11 11 7 11 11 11 11 1
13 1 13 13 11 11 11 11 11 11 11 11 13 1
14 1 M 13 13 11 11 11 11 11 11 11 13 13 1
15 1 M 13 13 11 11 11 11 11 11 13 13 B 1
16 1 M E 13 13 11 11 11 11 11 13 13 B 1
17 1 17 17 17 17 13 13 11 11 11 11 13 13 17 17 17 1
18 1 M 17 17 17 17 13 13 11 11 11 13 13 17 17 17 17 1
19 1 19 19 17 17 17 17 13 13 11 11 13 13 17 17 17 17 19 1
20 1 M 19 19 17 17 17 17 13 13 11 13 13 17 17 17 17 19 19 1
21 1 M 19 19 17 17 17 17 13 13 13 13 17 17 17 17 19 19 B 1
22 1 M E 19 19 17 17 17 17 13 13 13 17 17 17 17 19 19 B 1
23 1 23 23 23 23 19 19 17 17 17 17 13 13 17 17 17 17 19 19 23 23 23 1
24 1 M 23 23 23 23 19 19 17 17 17 17 13 17 17 17 17 19 19 23 23 23 23 1

Known Composite Values of
�
n
k

	
After sieving out known composites, an exhaustive search of

�
n
k

	
for 1 �

n � 100000 and 1 � k � 6 yielded three additional primes:
�
40
4

	
;
�
1416
4

	
and�

10780
4

	
.

4 Future Work

It seems unusual that we found Stirling primes of the form
�
n
2

	
and

�
n
4

	
but not

�
n
3

	
. Is there perhaps some reason that

�
n
3

	
is always composite?

By Equation 2,
�
n
3

	
= 5 � 2n�3 � 4 + 9

�
n�2
3

	
and since

�
4
3

	
= 6 then

�
n
3

	
is

always even for all even n � 4. Similarly
�
n
3

	
= 65 � 2n�5 � 40 + 81

�
n�4
3

	
and

�
5
3

	
= 25 shows that

�
n
3

	
� 0 mod 5 for n � 1 mod 4. Hence,

�
n
3

	
can be prime only for n � 3 mod 4. But so far, no prime values of

�
n
3

	
have been located. Nor does an obvious divisor pattern for

�
n
3

	
jump out for

n � 3 mod 4. The factoring of
�
15
3

	
= 227 � 10463 and

�
95
3

	
= 12707273 �

295097034961 � 94265058593107474994927717 gives a glimmer of hope that
�
n
3

	
may be prime for some value of n.
Can we extend the divisibility pattern of Theorems 1, 2 and 3 widthwise

across the table of Stirling numbers also? Perhaps. But it will not be as
simple as extending this pattern lengthwise to an if and only if result as we
did with Corollary 1. Such theorems would allow us to throw out more known
composite values of

�
n
k

	
extend a search with larger values of k.
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