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ABSTRACT 
The topic of autonomous vehicles has grown tremendously 

in the past 10 years. Research into different methods of computer 
vision, path planning algorithms, and controls theories have been 
an area of great interest for the automotive industry. While many 
of these systems can be theorized off data collected in a driver-
controlled environment, the testing of their holistic application 
remains a challenge for researchers to properly complete in a 
realistic and safe environment. Thus, computer simulations have 
been developed to help imitate real environments in such a way 
that rapid prototyping, training, and validating can be done in a 
safe, cost effective, and time saving manner, 

In this paper, one like simulation, named CARLA, is 
explored and investigated for its potential to test 
implementations of algorithms and controls theories in 
replicable, controlled fashion. Furthermore, the communication 
framework ROS will be utilized, and the official ros-bridge 
investigated. Such a system will allow an entire control stack to 
be simulated, the inner working of which will have no way to 
distinguish between simulation and real environments, allowing 
for most of the design to be re-utilized in a real-world model. 

KEY WORDS: CARLA, ROS, Autonomous Vehicles, 
Simulation, Prototyping 

INTRODUCTION 
CARLA is an open-source vehicle simulator targeted at 

aiding research and development of autonomous vehicle control 
solutions. As demonstrated in the paper introducing CARLA [1], 
autonomous vehicles built from many different machine learning 
algorithms can be tested, allowing for rapid implementation and 
experimentation of different algorithms in different 
environments. Furthermore, hazards can also be introduced into 
the simulated environment, such as differences in lighting 
conditions, rain, pedestrians, and other vehicles. 

CARLA has seen use in the academic field in developing 
autonomous vehicles, specifically reinforcement learning and 
conditional imitation learning [2], as their iterative nature lends 
well to accelerated computer simulation. Furthermore, these 
algorithms can often be dangerous to train in real life 

environments, as their first attempts are often unaware of any of 
the concepts to fulfil their tasks.   

One of the key benefits of CARLA is its real-time generation 

being categorized and tracked, information such as ground truth 
image-segmentation from a mounted camera becomes a trivial 
task.  

Another key benefit is the configurability of the 
environment. Any component in the environment can be easily 
scripted to create specific test-case scenarios to understand how 
a control solution might behave. Furthermore, these can be 
packaged together and rerun with no variability to allow for 
consistent validation and training data to be utilized.  

HARDWARE REQUIREMENTS 
Before detailing the exact process recommended to install 

CARLA and ROS, a few notes should be made before beginning 
the installation process.  

First, it should be noted that, many autonomous vehicle 
solutions require good hardware in order to run at a reasonably 
fast rate to be usable. With CARLA, however, this requirement 
can be lowered due to its Synchronous Mode and fixed time step. 
These allow for the simulation to complete an entire calculation 
cycle and publish that information, waiting until a tick is 
received from a client until the next cycle is completed. With the 
implementation of ROS, this tick can be halted until user-
developed algorithms finish their calculations as well, allowing 
for much slower hardware to be utilized in the simulation. 

This does not come without caveats, however. Since the 
simulation is halted until all calculations are complete, 
considerably under-powered hardware can vastly increase the 
time it takes for each user testing iteration. Thus, it is 
recommended that users have hardware that is able to run the 
simulation itself in real time, noted in the documentation [3] as 
at least 10 FPS. 

Furthermore, due to the nature of the type of computational 

machine need to be considered in order to run the simulation in 
real time.  

It is also recommended that a clean installation of the 
operating system be used, one with at least 50 GB of storage 
space, to sandbox the development and prevent unintended 
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system package changes from interfering with ROS and 
CARLA. It is recommended that this be its own drive, but extra 
steps can be followed to install it alongside another OS. 

Since this paper will be working with ROS, a Linux based 
OS is by far the most popular solution. Ubuntu is the distribution 
of choice for many and is one of the easiest for users unfamiliar 
with developing on Linux. As to which version, 16.04 LTS was 
chosen for a variety of reasons for this paper, mainly due to it 
being the version which most development packages target for 
release, and for the number of packages available for its ROS 
release, ROS Kinetic.  

INSTALLATION OVERVIEW 
The overview of installing this development environment is 

as follows: 
1. Install Ubuntu 16.04 LTS  
2. Install ROS 
3. Clone CARLA 
4. Link CARLA development packages 
5. Install carla-ros-bridge 
6. Install any extra dependencies 

This paper will take a holistic approach in demonstrating the 
steps to install and configure the environment. 

INSTALLING UBUNTU 
Installing Ubuntu requires first writing an installation image 

onto a bootable media other than the one intended to host the 
development environment. In most cases, an 8 GB USB flash 
drive will suffice. 

The installation image can be found on the official ubuntu 
site [4]. A desktop image is recommended due to it installing 
many graphical packages required for running CARLA. Click 
the link pointing to either the 64-bit (most common) or 32-bit 
image, referring to whether the PC intended on running CARLA 
is 32-bit or 64-bit.  

This will download a .ISO file, a common filetype used for 
storing copies of systems and CD / DVDs. Turning this into a 
bootable medium requires the use of an additional program. The 
recommended software for creating a bootable USB is Etcher [5] 
for Windows, Mac, and Linux. A guide for creating a bootable 
USB flash drive on Mac has been created by Ubuntu [6]. In short, 
running Etcher after inserting the USB flash drive into the 
machine will allow selecting the flash drive and the Ubuntu ISO, 
in order to create a bootable medium. 

Once finished, restart the machine. During the initial splash 
screen display during boot, before any OS is loaded, press the 

s configured correctly, an entry 

list of bootable mediums. Select it start up the installation 
process. Ubuntu will ask the user to either install or to try the OS; 
selecting install will load the OS with the installation menu 
displayed.  

Standard OS installation follows, including system 
language, time-zone, computer name, username and password, 

encryption, etc. Before committing to the install, the installer 
will prompt the user to pick the installation location. Once 
selected, any data stored at the location specified is not 
guaranteed to be recoverable. It is recommended that an entire 
drive be picked as the installation target, allowing for ubuntu to 
create the proper partition sizes automatically, but advanced 
users can specify specific partitions if they wish. Once complete, 
shut down the computer, remove the USB Flash drive, and boot 
up the computer, which should now have defaulted to Ubuntu as 
its default OS. 

It is recommended that the machine be allowed time to 
update all the packages that have pre-installed to their latest 
versions before continuing. 

INSTALLING ROS 
ROS has expansive documentation for installation, as well 

as tutorials on usage and package explanations [7]. As such, 
specific commands for the installation process can be found on 
their documentation page, and this paper will cover the overall 
steps required to install ROS. 

The release of ROS being used for this paper is Kinetic, 
targeted at Ubuntu version 16.04 LTS. The flow of steps is as 
follows: 

1. Add ROS to the list of verified package 
repositories 

2. Install ros-kinetic-desktop-full 
3. Initialize rosdep 
4. Edit the .bashrc file for ROS commands to be 

enabled by default 
5. Install dependencies for building ROS packages 

These steps will install all the packages used for developing 
with ROS, including their dependencies, and as such will make 
up around 5 GB of space. Creation of the catkin workspace will 
be delayed until after installing CARLA and its ros-bridge due to 
their implementation. 

CLONE CARLA 
CARLA has provided useful documentation detailing 

information regarding the basics of running the simulation as 
well as installation requirements [8]. These will be referenced 
during the install and setup process. The latest release of CARLA 
can be found on its github repository [9]. Git is an open-source 
software version-control system which tracks every change 
made during software development. Github is the most popular 
hosting site for git repositories, and most open-source projects 
utilize the site for its renowned collaboration and backup 
services. 

Using that repository, clone its contents into the Documents 
folder using the following commands from the Ubuntu command 
line interface: 

 

cd ~/Documents 

git clone https://github.com/carla-simulator/carla.git carla 
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Before running any of the examples provided, installation 
of pygame and numpy is necessary to run the python scripts. 
Installation can be done using: 

python -m install --user pygame numpy 

CARLA should now be successfully installed, and any of 
the examples in their documentation can be run to demonstrate 

LINK CARLA DEVELOPMENT PACKAGES 
One final step in ensuring CARLA is ready for development 

is linking their Python development packages to the system 
variable PYTHONPATH. By doing so, it allows programs 
utilizing the CARLA library to be run on the development 
machine, both as individual scripts and as nodes run through 
ROS. 

This PYTHONPATH variable can be modified in many 
ways, including manually appending to the variable during the 
launch of a ROS package. However, the easier and recommended 
method is to append a command to the end of the .bashrc file 
located in the home directory. This file can be thought of as a list 
of commands to be run whenever a bash terminal of any sort is 
created on the development machine, including any made by 
ROS nodes and packages.  

Before linking, the .egg (a file compression format like tar 
and zip) containing the CARLA libraries must be located. As of 
version 0.9.5, the version being used in this paper, the archive is 
located at: 

 

$(CARLA)/PythonAPI/carla/dist/carla-0.9.5-pyX.Y-linux-x8
6_64.egg 

X.Y is the python version the library was developed for. 
There are two target versions in the 0.9.5 version of CARLA: 
Python 2.7 and 3.5. ROS development and communication 
packages are developed for Python 2.7, therefore this paper 
utilized the archive: 

 

carla-0.9.5-py2.7-linux-x86_64.egg 

Furthermore, the carla-ros-bridge operates under the 
assumption that the archive is located at:  

 

$(CARLA)/PythonAPI/carla 

So, a symbolic link also needs to be created so that the 
archive points to that destination. All of these can be distilled 
down to one command, which will take the command and 
append it to the end of the .bashrc file: 

$PYTHONPATH:/home/emi
lybarbour/Documents/carla/PythonAPI/carla/dist/carla-0.
9.5-py2.7-linux-x86_64.egg:/home/emilybarbour/Docume
nts/carla/PythonAPI/c

Finally, either sourcing the .bashrc file, or rebooting the 
terminal will execute that command and allow the CARLA 
libraries to be successfully imported. 

INSTALL CARLA-ROS-BRIDGE 
The CARLA ros-bridge [10] can be found from the same 

author on GitHub as the main CARLA repository. The README 
contains helpful information about installation, as well as all the 
messages and integrations available for ROS nodes to interact 
with. 

The exact commands to setup the ros-bridge can be found in 
the README, but an overview of the steps are as follows: 

 
1. Create the folder structure 
2. Clone the repository  
3. Link ros-bridge packages into the catkin_ws/src folder 
4. Install all required ROS package dependencies found in 

each ros-bridge package 
5. Compile the packages and link them to the ROS 

workspace 
 
Launching any of the .launch files in the carla_ros_bridge 

package will successfully connect to the simulator if an instance 
of the CARLA simulator is already running on the machine. 

INSTALL EXTRA DEPENDENCIES 
Several extra libraries that can be useful for developing 

different types of autonomous vehicles are also included: 
 
1. CUDA 9.0 and cuDNN 7.0 [11]: Libraries for 

developing applications that utilize CUDA cores found 
on an NVIDIA GPU. Useful for any application that can 
utilize vector mathematics to vastly speed up 
calculations, such as LIDAR processing and Machine 
Learning.  

2. ros_numpy [12]: Helpful package to convert ROS 
Sensor data types to numpy arrays, a fast and efficient 
way of representing data in python. Placing the 
repository inside the catkin_ws/src will add its library 
to ROS packages upon a one-time execution of 
catkin_make.  

3. Point Cloud Library (PCL) [13r]: An opensource library 
containing many algorithms for filtering and 
interpreting Point Clouds, the data organization ROS 
Lidars utilize. Installation can be done by adding the 
following commands to the CMakeLists.txt file in a 
dummy ros package inside the catkin_ws: 

 

find_package(PCL REQUIRED) 



UAB School of Engineering - Mechanical Engineering - Journal of the ECTC, Volume 18 Page 53 

... 

include_directories(${PCL_INCLUDE_DIRS}) 

... 

target_link_libraries(<YOUR_TARGET> ${PCL_LIBRARI
ES}) 

Then ROS will install the package with the following 
command: 

 

ic -y 

4. additional python packages through pip: matplotlib, 
scipy 

5. additional python packages through apt-get: python-
opencv, python-opencv-contrib 

 

INTRODUCTION TO CARLA 
With the development environment configured, a coarse 

overview of CARLA is presented. One key idea to note is that 
each process in CARLA runs as its own instance, their only 
communication amongst one another being the Python CARLA 
library. Because of this, the CARLA simulator, once launched, 
will need to persist in its own bash terminal, and subsequent 
terminals will need to be opened to each host their own 
programs. 

In order to launch CARLA, the CarlaUE4.sh bash script 
needs to be executed. An example command might be: 

./CarlaUE4.sh -windowed -ResX=320 -ResY=240 -bench
mark -fps=10 

Any Unreal Engine 4 command can be passed to the bash 
script. Extra, CARLA specific commands have been added as 
well. A fixed framerate can be achieved with the fps=X 
command, and is recommended to set to define the time step 
between each iteration. For example, launching CARLA with a 
fixed framerate of 20 on low quality will look like this: 

./CarlaUE4.sh -fps=10 -quality-level=Low 

 
Other important commands feature setting maps, loading 

scenarios, setting graphics fidelity, and setting the local port over 
which CARLA-program communications will occur. 

Once launched, CARLA will open the map specified, or the 
default, as in Figure 1. Once the world has been loaded, the 
simulation is ready for Python programs to communicate.  

 
 

 
 

Figure 1. Default Map with no vehicles loaded when 
running CarlaUE4.sh 

 
Many of the different functions available to developers are 

demonstrated by the python examples bundled with the CARLA 
repository. Some of the notable include: 

 
 setting weather conditions, which affect traction 

and camera sensor data 
 setting and changing maps, scenarios 
 accessing vehicles in the simulation and reading or 

modifying properties, such as position, speed 
 spawning vehicles, removing vehicles 
 controlling traffic lights 
 Comparing world positions, generating paths 

between positions following road laws 
 converting between graphical coordinates and 

geoSat coordinates 

ROS INTEGRATION 
One of the benefits of ROS is its ability to separate 

development amongst many packages and create applications 
that combine those packages together for a specific controls 
stack. The ROS integration furthers this development ideology 
by allowing an additional package to be developed alongside a 
control stack dedicated for a physical vehicle, delivering sensor 
data to said package in the same way the physical vehicle would. 

CARLA data is real world data, allowing it to be tested and 
trained without the physical vehicle, and all the danger and 
limitations that imposes. 

In order to have ROS integrate with CARLA, the 
carla_ros_bridge package needs to be launched alongside the 
vehicle controls stack and the user developed CARLA 
integration scripts, all of which can be done within a single 
launch file. The ros-bridge communicates with CARLA, 
relaying information such as map, synchronization, simulation 
time, and basic information about any dynamic object placed in 
the map.  This is illustrated in Figure 2. 

Furthermore, any vehicle matching one of the names inside 
a list will be given a large host of topics ranging from sensor data 
to vehicle position, as well as the ability to control the vehicle 
either through a throttle, steering model, or an Ackermann drive 
model. These topics return simulated sensor data in the standard 
ROS format, speeding up development times.  
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Figure 2. RVIZ Display showing topic information from 
sensors and diagnostics generated from the ros_bridge. 

Only ROS controlled vehicle exists in this example.  

 
 
Another package inside the ros-bridge exists for quickly 

configuring vehicles and sensor arrays, as well as providing a 
launch file to quickly spawn the vehicle into the environment for 
control. Through a json file, a list of sensors, their type, name, 
position relative to the ground center of the car (in meters). Data 
created by these sensors can be found in the topics: 

 
 

carla/(VEHICLE_NAME)/(SENSOR_NAME)  

Finally, a ROS package exists that can convert a pose in the 
environment to a path from the vehicle to the pose following road 
laws. This is particularly useful for testing vehicle controls and 
path following without having to calculate the path itself with 
sensor data. 

EXAMPLE PACKAGE 
This next section gives an overview on the specifics to 

create a ROS package that will: 
 Connect the ros-bridge to the CARLA process 
 Spawn in an ego-vehicle with a specific sensor 

array and vehicle type 
 

model or an Ackermann model 
 Enable and disable built in autopilot 
 Send basic motor commands 
 Receive and process LIDAR data coming from the 

ego-vehicle 

LAUNCHING ROS-BRIDGE 
First, after creating the catkin package, a launch file will be 

created to spawn instances of all of the vehicles nodes, as well as 
ros-bridge. Common organizational practices for ROS dictate a 
config, include, launch, and src folder be created inside the 
package to help organize all of the files needed to run the vehicle. 
Thus, the launch file will be located at: 

 
 

${PACKAGE}/launch/${NAME}.launch 

While this specific example utilizes a single launch file, 
separating individual parts into their own launch files helps 
modularize the system, allowing for multiple launch files to be 
created to initialize different parts of the system for different 
environments or testing purposes. 

The launch file is written in a markup language akin to 
XML. As a result, any piece described hereafter can theoretically 
be placed inside any launch file, as long as the hierarchy is 
properly respected. 

Finally, it is recommended to mask any potentially variable 
information at the top of the launch file with default values, such 
that any of them can be quickly modified from the command line 
without need to modify the launch file. In order to create an 
argument with a default value, use the following command as the 
first child of the launch node: 

<arg name='NAME' default='VALUE'/> 

where NAME is the name to be referenced both in the command 
line and in the launch file, and VALUE is the default value to be 
used if no argument is passed via the command line. Both NAME 
and VALUE are encased in single quotes. The argument can 
thereafter be used anywhere a string would be used, most often 
signified by single or double quotes.  

For example, the following would initialize the HOST 
argument with the value localhost, and will be used in the 
creation of the ros-bridge: 

 
 

<arg name='host' default='localhost'/> 

<include file="$(find carla_ros_bridge)/launch/carla_ros_b
ridge.launch"> 

        <arg name='host'  

 value='$(arg host)'/> 

... 

In essence, using the $ identifier specifies that the immediate 
portion of the string encapsulated in parentheses should contain 
a command and value pair. For arguments, the command is arg 
and the value is the name of the argument intended to be used. If 
the argument is not found in the file above the current line or 
does not have a value set for it (which can be prevented by setting 
a default value), the launch file will throw an error, and will 
shutdown any ROS nodes created by the file.   

In order to boot the ros-bridge with the launch file, an 
include child pointing to the ros-bridge launch file developed by 
CARLA must exist inside the launch file, such as: 
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<!--    BOOT ROS <-> CARLA INTERFACE  --> 

    <include  

 file="$(find carla_ros_bridge)/launch/carla_ros_
bridge.launch"> 

         <arg name='host'  

  value='$(arg host)'/> 

         <arg name='port'  

  value='$(arg port)'/>  

    </include> 

As noted previously, two arguments were stored: host and 
port. By storing this information as arguments, it allows the ROS 
package to point to any CARLA instance running on any port or 
IP, including ones not located on the local machine.  

SPAWN EGO-VEHICLE 
The term ego-vehicle indicates a vehicle in the CARLA 

simulation that is intended to be interfaced with using the ros-
bridge. As such, any vehicle named ego-vehicle (or other custom 
names if a custom config file is loaded) will have publisher and 
subscriber topics created so that sensor information can be read 
and vehicle commands can be sent. 

Spawning an ego-vehicle is done in a similar manner to 
booting ros-bridge, however an additional file is needed in order 
to communicate vehicle and sensor information. A JSON file is 
created and passed to a CARLA developed launch file indicated 
which vehicles the ego-vehicle can choose from (ranging from 
an exact model to vehicle size description). 

JSON is a data structure designed to easily represent key 
value pairs in a hierarchical manner, allowing for definitions of 
parent-child relationships.  

 This specific JSON file uses the following format: 

{ 

    "sensors": [ 

         { 

   SENSOR 1 

  }, 

  { 

   SENSOR 2 

  } 

 ] 

} 

The outer curly braces indicated the vehicle parent, that has 
a list of child sensors in an unordered list. Each sensor can be 
described with the following structure: 

 

{ 

 type": "sensor.camera.rgb", 

  "id": "front", 

  "x": 2.0, "y": 0.0,  

  "z": 2.0, "roll": 0.0,  

  "pitch": 0.0, "yaw": 0.0, 

  ... 

} 

Each field shown is mandatory for every sensor to 
successfully initialize. Type is a String matching one of the eight 
identifiers for each sensor supported in CARLA, while id is the 
specific reference identifier referenced in code to retrieve sensor 
data. X, Y, Z specify the sensors position relative to the vehicles 
center of geometry, or the mean of all X, Y, and Z points in the 
model. Furthermore, Positive X moves towards the front of the 
vehicle, Positive Z moves towards the Roof of the vehicle, and 
Positive Y moves towards the right side of the vehicle. Finally 
roll pitch and yaw represent the angles from the sensor origin for 
each dimension. 

Finally, each sensor may require additional information in 
order for it to be properly initialized, such as camera image size. 
Other properties can be optional, with included defaults if not 
specified in the JSON file. All of these specifics can be found on 
the CARLA documentation for cameras and sensors [14]. 

Any number of supported sensors may be strung together 
inside the sensors list and will each create sensor topic 
information as denoted in the ros-bridge github repository. In the 
launch file, another $ denoted argument will be used to indicate 
the location of the sensor information JSON file: 

 

<arg name="sensor_definition_file"  

default="$(find autonomous_server)/config/sensors.json"/
> 

The find command utilizes a ROS feature that, if a package 
is successfully compiled, and the devel/setup.bash for the 
specific workspace has been sourced, indexes the location of the 
package in a global list. This has the benefit of allowing named 
references to packages return full path information, allowing for 
development to be system independent. 

In essence, the find command will lookup the specified 
package name from the global list of packages, and return the 
full system path to its root directory, allowing for files inside the 
package to be directly referenced. 
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Like the ros-bridge initialization, the ego vehicle will be 
created by including the CARLA developed 
carla_ego_vehicle.launch file from within the carla_ego_vehicle 
package. This launch file includes argments to identify a string 
to be passed to the vehicle filter, the sensors JSON file created 
previously, and the name of the vehicle, often defaulted to 
ego_vehicle.  

With these two files included, the current launch file will 
connect to the CARLA instance, spawn a vehicle from the 
vehicles matching the filter, equip it with a sensor array defined 
by the sensors JSON file, and start publishing topics for each 
sensor, as well as general vehicle information, world 
information, and diagnostic information. 

CONTROL THE VEHICLE 
Out of the box the carla-ros-bridge supports 3 methods of 

commanding the ego-vehicle to move: autopilot, throttle / steer, 
and Ackermann control.  

Autopilot is a useful command for testing, and simulating 
semi-random pedestrians and other outside vehicles. Each map 
has what is in essence a navigation mesh, or a set of pre-
programmed lines following each road lane. When a vehicles 
CARLA based autopilot is enabled, the vehicle simply picks a 
random location it can traverse to on the map, and then follows 
the navigation mesh to its destination. It will also stop for 
vehicles in its path, stop at stop lights and stop signs, and wait 
for a left turn to be safe before taking it. 

Another method is the throttle / steer method, whereby each 
axis of movement is set to a specific percentage. Steering can  be 
anywhere from 100% left (written as -1.0), to centered (written 
as 0.0), or 100% right (written as 1.0). Likewise, throttle and 
brake are set as a value between 0 and 1, fully off and fully on 
respectively. Vehicle gear can also be set to an integer from 1 to 
n, n being the highest gear available in the specific ego vehicle. 
And finally, a Boolean variable represents whether the 
handbrake is being applied or the vehicle is in a reverse gear. 
This model is the backbone for all other control models, as even 
the Ackermann model provided by CARLA translates into the 
throttle / steer model. 

Finally, there exists a pre-built Ackermann control module, 
utilizing a simple PID algorithm, which is very useful for 
developing an autonomous vehicle in CARLA intended to be 
used in the real world. Using the ROS AckermannDrive 
message, the navigation stack only calculates a desired forward 
velocity, acceleration, jerk, and desired wheel angle and angle 
velocity. Utilizing formulas found from an article written by 
Jarrod Snider [15], vehicle velocity and wheel angle can easily 
be calculated given a path and the vehicles relative position to 
the path.  

One Caveat using the Ackermann controller is that it needs 
to also be initialized alongside the ros-bridge. Doing so is very 
similar to the ros-bridge, by including the 
carla_ackermann_control.launch file inside the one of the 
packages launch files. 

BASIC LIDAR PROCESSING WITH PCL 
Point Cloud Library is the most popular point cloud 

processing solution for ROS packages, and as such has great 
support in forms of tutorials and internet help boards. It is 
illustrated in Figure 3. Keep in mind that, at the time of this 
paper, no official or feature complete version of PCL has been 
translated to python 2.7, and thus it is recommended that 
packages do all Point Cloud processing in C++ nodes.  

The overall workflow of using PCL in ros is: 
 

1. Subscribe to a sensor_msgs::PointCloud2 topic 
from a lidar sensor 

2. Convert the sensor_msgs::PointCloud2 data to 
pcl::PCLPointCLoud2 data 

3. Process the Point Cloud 
4. Publish either the resultant Point Cloud as a 

sensor_msgs::PointCloud2 or other information 
that can inform the vehicle of its calculations 

 

 
 

Figure 3. RVIZ Display showing filtered LIDAR data using 
a voxel grid filter to trim dense sections of the point cloud 

collide with the vehicle in the vertical axis. A top down 
heatmap is generated in the bottom left.  

 
The first step shall be left to the reader, as that process does 

not differ from subscribing to any other ROS topic in C++.  
Inside the subscriber call back, to translate the sensor_msgs 

point cloud to the pcl point cloud, use: 
 

void lidar_cb(const sensor_msgs::PointCloud2ConstPtr& 
cloud_msg) 

{ 

 pcl::PCLPointCloud2::Ptr cloud(new pcl::PCLP
ointCloud2); 

 pcl_conversions::toPCL(*cloud_msg, *cloud); 

the call back takes a reference to a pointer pointing to the data 
collected from the lidar sensor, and is converted to its pcl 
counterpart, and then stored inside the memory address pointed 
to by the pcl pointer named cloud. 

After this is complete, any tutorial operating on 
pcl::PointCloud2 data can be followed, in this specific example 
a voxel grid filter will be used to trim any groups of points that 
are too close to one another. This will vastly lower the 
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computational cost of working on the lidar data, while keeping 
its shape intact. This can be done by: 

 

pcl::PCLPointCloud2::Ptr cloud_voxel(new pcl::PCLPoint
Cloud2); 

//voxel grid filter 

pcl::VoxelGrid<pcl::PCLPointCloud2> sor; 

sor.setInputCloud(cloud); 

sor.setLeafSize(0.25, 0.25, 0.25); 

sor.filter (*cloud_voxel); 

A pointer is created to point to the resultant data. A voxelGrid 
filter is then created, given the converted point cloud as its input, 
given a leaf size, then computed, returning its results in the 
pointer created. 

This is the basic framework with which point clouds are 
manipulated in PCL: initialize a pointer and a filter, set its input 
and variables, and then compute the result and store it in the 
memory location pointed to by the pointer. A chain of these can 
also be created, where the pointer of the first result becomes the 
input for the second filter, and so on. 

Once all work on the lidar data has been completed, it can 
often be useful to publish its filtered output for use in other 
nodes. This is done by once again converting the data back into 
its original form, and then published on a separate topic, like so: 

 
 

sensor_msgs::PointCloud2 output; 

pcl_conversions::fromPCL(*cloud_plane, output); 
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