
UAB School of Engineering - Mechanical Engineering - Journal of the ECTC, Volume 18 Page 50

Journal of UAB ECTC
Volume 18, 2019

Department of Mechanical Engineering
The University of Alabama, Birmingham

Birmingham, Alabama USA

AUTONOMOUS VEHICLE SIMULATION USING OPEN SOURCE SOFTWARE CARLA

Emily Barbour, Kevin McFall
Kennesaw State University

Marietta, Georgia USA

ABSTRACT
The topic of autonomous vehicles has grown tremendously

in the past 10 years. Research into different methods of computer
vision, path planning algorithms, and controls theories have been
an area of great interest for the automotive industry. While many
of these systems can be theorized off data collected in a driver-
controlled environment, the testing of their holistic application
remains a challenge for researchers to properly complete in a
realistic and safe environment. Thus, computer simulations have
been developed to help imitate real environments in such a way
that rapid prototyping, training, and validating can be done in a
safe, cost effective, and time saving manner,

In this paper, one like simulation, named CARLA, is
explored and investigated for its potential to test
implementations of algorithms and controls theories in
replicable, controlled fashion. Furthermore, the communication
framework ROS will be utilized, and the official ros-bridge
investigated. Such a system will allow an entire control stack to
be simulated, the inner working of which will have no way to
distinguish between simulation and real environments, allowing
for most of the design to be re-utilized in a real-world model.

KEY WORDS: CARLA, ROS, Autonomous Vehicles,
Simulation, Prototyping

INTRODUCTION
CARLA is an open-source vehicle simulator targeted at

aiding research and development of autonomous vehicle control
solutions. As demonstrated in the paper introducing CARLA [1],
autonomous vehicles built from many different machine learning
algorithms can be tested, allowing for rapid implementation and
experimentation of different algorithms in different
environments. Furthermore, hazards can also be introduced into
the simulated environment, such as differences in lighting
conditions, rain, pedestrians, and other vehicles.

CARLA has seen use in the academic field in developing
autonomous vehicles, specifically reinforcement learning and
conditional imitation learning [2], as their iterative nature lends
well to accelerated computer simulation. Furthermore, these
algorithms can often be dangerous to train in real life

environments, as their first attempts are often unaware of any of
the concepts to fulfil their tasks.

One of the key benefits of CARLA is its real-time generation

being categorized and tracked, information such as ground truth
image-segmentation from a mounted camera becomes a trivial
task.

Another key benefit is the configurability of the
environment. Any component in the environment can be easily
scripted to create specific test-case scenarios to understand how
a control solution might behave. Furthermore, these can be
packaged together and rerun with no variability to allow for
consistent validation and training data to be utilized.

HARDWARE REQUIREMENTS
Before detailing the exact process recommended to install

CARLA and ROS, a few notes should be made before beginning
the installation process.

First, it should be noted that, many autonomous vehicle
solutions require good hardware in order to run at a reasonably
fast rate to be usable. With CARLA, however, this requirement
can be lowered due to its Synchronous Mode and fixed time step.
These allow for the simulation to complete an entire calculation
cycle and publish that information, waiting until a tick is
received from a client until the next cycle is completed. With the
implementation of ROS, this tick can be halted until user-
developed algorithms finish their calculations as well, allowing
for much slower hardware to be utilized in the simulation.

This does not come without caveats, however. Since the
simulation is halted until all calculations are complete,
considerably under-powered hardware can vastly increase the
time it takes for each user testing iteration. Thus, it is
recommended that users have hardware that is able to run the
simulation itself in real time, noted in the documentation [3] as
at least 10 FPS.

Furthermore, due to the nature of the type of computational

machine need to be considered in order to run the simulation in
real time.

It is also recommended that a clean installation of the
operating system be used, one with at least 50 GB of storage
space, to sandbox the development and prevent unintended

UAB School of Engineering - Mechanical Engineering - Journal of the ECTC, Volume 18 Page 51

system package changes from interfering with ROS and
CARLA. It is recommended that this be its own drive, but extra
steps can be followed to install it alongside another OS.

Since this paper will be working with ROS, a Linux based
OS is by far the most popular solution. Ubuntu is the distribution
of choice for many and is one of the easiest for users unfamiliar
with developing on Linux. As to which version, 16.04 LTS was
chosen for a variety of reasons for this paper, mainly due to it
being the version which most development packages target for
release, and for the number of packages available for its ROS
release, ROS Kinetic.

INSTALLATION OVERVIEW
The overview of installing this development environment is

as follows:
1. Install Ubuntu 16.04 LTS
2. Install ROS
3. Clone CARLA
4. Link CARLA development packages
5. Install carla-ros-bridge
6. Install any extra dependencies

This paper will take a holistic approach in demonstrating the
steps to install and configure the environment.

INSTALLING UBUNTU
Installing Ubuntu requires first writing an installation image

onto a bootable media other than the one intended to host the
development environment. In most cases, an 8 GB USB flash
drive will suffice.

The installation image can be found on the official ubuntu
site [4]. A desktop image is recommended due to it installing
many graphical packages required for running CARLA. Click
the link pointing to either the 64-bit (most common) or 32-bit
image, referring to whether the PC intended on running CARLA
is 32-bit or 64-bit.

This will download a .ISO file, a common filetype used for
storing copies of systems and CD / DVDs. Turning this into a
bootable medium requires the use of an additional program. The
recommended software for creating a bootable USB is Etcher [5]
for Windows, Mac, and Linux. A guide for creating a bootable
USB flash drive on Mac has been created by Ubuntu [6]. In short,
running Etcher after inserting the USB flash drive into the
machine will allow selecting the flash drive and the Ubuntu ISO,
in order to create a bootable medium.

Once finished, restart the machine. During the initial splash
screen display during boot, before any OS is loaded, press the

s configured correctly, an entry

list of bootable mediums. Select it start up the installation
process. Ubuntu will ask the user to either install or to try the OS;
selecting install will load the OS with the installation menu
displayed.

Standard OS installation follows, including system
language, time-zone, computer name, username and password,

encryption, etc. Before committing to the install, the installer
will prompt the user to pick the installation location. Once
selected, any data stored at the location specified is not
guaranteed to be recoverable. It is recommended that an entire
drive be picked as the installation target, allowing for ubuntu to
create the proper partition sizes automatically, but advanced
users can specify specific partitions if they wish. Once complete,
shut down the computer, remove the USB Flash drive, and boot
up the computer, which should now have defaulted to Ubuntu as
its default OS.

It is recommended that the machine be allowed time to
update all the packages that have pre-installed to their latest
versions before continuing.

INSTALLING ROS
ROS has expansive documentation for installation, as well

as tutorials on usage and package explanations [7]. As such,
specific commands for the installation process can be found on
their documentation page, and this paper will cover the overall
steps required to install ROS.

The release of ROS being used for this paper is Kinetic,
targeted at Ubuntu version 16.04 LTS. The flow of steps is as
follows:

1. Add ROS to the list of verified package
repositories

2. Install ros-kinetic-desktop-full
3. Initialize rosdep
4. Edit the .bashrc file for ROS commands to be

enabled by default
5. Install dependencies for building ROS packages

These steps will install all the packages used for developing
with ROS, including their dependencies, and as such will make
up around 5 GB of space. Creation of the catkin workspace will
be delayed until after installing CARLA and its ros-bridge due to
their implementation.

CLONE CARLA
CARLA has provided useful documentation detailing

information regarding the basics of running the simulation as
well as installation requirements [8]. These will be referenced
during the install and setup process. The latest release of CARLA
can be found on its github repository [9]. Git is an open-source
software version-control system which tracks every change
made during software development. Github is the most popular
hosting site for git repositories, and most open-source projects
utilize the site for its renowned collaboration and backup
services.

Using that repository, clone its contents into the Documents
folder using the following commands from the Ubuntu command
line interface:

cd ~/Documents

git clone https://github.com/carla-simulator/carla.git carla

UAB School of Engineering - Mechanical Engineering - Journal of the ECTC, Volume 18 Page 52

Before running any of the examples provided, installation
of pygame and numpy is necessary to run the python scripts.
Installation can be done using:

python -m install --user pygame numpy

CARLA should now be successfully installed, and any of
the examples in their documentation can be run to demonstrate

LINK CARLA DEVELOPMENT PACKAGES
One final step in ensuring CARLA is ready for development

is linking their Python development packages to the system
variable PYTHONPATH. By doing so, it allows programs
utilizing the CARLA library to be run on the development
machine, both as individual scripts and as nodes run through
ROS.

This PYTHONPATH variable can be modified in many
ways, including manually appending to the variable during the
launch of a ROS package. However, the easier and recommended
method is to append a command to the end of the .bashrc file
located in the home directory. This file can be thought of as a list
of commands to be run whenever a bash terminal of any sort is
created on the development machine, including any made by
ROS nodes and packages.

Before linking, the .egg (a file compression format like tar
and zip) containing the CARLA libraries must be located. As of
version 0.9.5, the version being used in this paper, the archive is
located at:

$(CARLA)/PythonAPI/carla/dist/carla-0.9.5-pyX.Y-linux-x8
6_64.egg

X.Y is the python version the library was developed for.
There are two target versions in the 0.9.5 version of CARLA:
Python 2.7 and 3.5. ROS development and communication
packages are developed for Python 2.7, therefore this paper
utilized the archive:

carla-0.9.5-py2.7-linux-x86_64.egg

Furthermore, the carla-ros-bridge operates under the
assumption that the archive is located at:

$(CARLA)/PythonAPI/carla

So, a symbolic link also needs to be created so that the
archive points to that destination. All of these can be distilled
down to one command, which will take the command and
append it to the end of the .bashrc file:

$PYTHONPATH:/home/emi
lybarbour/Documents/carla/PythonAPI/carla/dist/carla-0.
9.5-py2.7-linux-x86_64.egg:/home/emilybarbour/Docume
nts/carla/PythonAPI/c

Finally, either sourcing the .bashrc file, or rebooting the
terminal will execute that command and allow the CARLA
libraries to be successfully imported.

INSTALL CARLA-ROS-BRIDGE
The CARLA ros-bridge [10] can be found from the same

author on GitHub as the main CARLA repository. The README
contains helpful information about installation, as well as all the
messages and integrations available for ROS nodes to interact
with.

The exact commands to setup the ros-bridge can be found in
the README, but an overview of the steps are as follows:

1. Create the folder structure
2. Clone the repository
3. Link ros-bridge packages into the catkin_ws/src folder
4. Install all required ROS package dependencies found in

each ros-bridge package
5. Compile the packages and link them to the ROS

workspace

Launching any of the .launch files in the carla_ros_bridge

package will successfully connect to the simulator if an instance
of the CARLA simulator is already running on the machine.

INSTALL EXTRA DEPENDENCIES
Several extra libraries that can be useful for developing

different types of autonomous vehicles are also included:

1. CUDA 9.0 and cuDNN 7.0 [11]: Libraries for

developing applications that utilize CUDA cores found
on an NVIDIA GPU. Useful for any application that can
utilize vector mathematics to vastly speed up
calculations, such as LIDAR processing and Machine
Learning.

2. ros_numpy [12]: Helpful package to convert ROS
Sensor data types to numpy arrays, a fast and efficient
way of representing data in python. Placing the
repository inside the catkin_ws/src will add its library
to ROS packages upon a one-time execution of
catkin_make.

3. Point Cloud Library (PCL) [13r]: An opensource library
containing many algorithms for filtering and
interpreting Point Clouds, the data organization ROS
Lidars utilize. Installation can be done by adding the
following commands to the CMakeLists.txt file in a
dummy ros package inside the catkin_ws:

find_package(PCL REQUIRED)

UAB School of Engineering - Mechanical Engineering - Journal of the ECTC, Volume 18 Page 53

...

include_directories(${PCL_INCLUDE_DIRS})

...

target_link_libraries(<YOUR_TARGET> ${PCL_LIBRARI
ES})

Then ROS will install the package with the following
command:

ic -y

4. additional python packages through pip: matplotlib,
scipy

5. additional python packages through apt-get: python-
opencv, python-opencv-contrib

INTRODUCTION TO CARLA
With the development environment configured, a coarse

overview of CARLA is presented. One key idea to note is that
each process in CARLA runs as its own instance, their only
communication amongst one another being the Python CARLA
library. Because of this, the CARLA simulator, once launched,
will need to persist in its own bash terminal, and subsequent
terminals will need to be opened to each host their own
programs.

In order to launch CARLA, the CarlaUE4.sh bash script
needs to be executed. An example command might be:

./CarlaUE4.sh -windowed -ResX=320 -ResY=240 -bench
mark -fps=10

Any Unreal Engine 4 command can be passed to the bash
script. Extra, CARLA specific commands have been added as
well. A fixed framerate can be achieved with the fps=X
command, and is recommended to set to define the time step
between each iteration. For example, launching CARLA with a
fixed framerate of 20 on low quality will look like this:

./CarlaUE4.sh -fps=10 -quality-level=Low

Other important commands feature setting maps, loading

scenarios, setting graphics fidelity, and setting the local port over
which CARLA-program communications will occur.

Once launched, CARLA will open the map specified, or the
default, as in Figure 1. Once the world has been loaded, the
simulation is ready for Python programs to communicate.

Figure 1. Default Map with no vehicles loaded when
running CarlaUE4.sh

Many of the different functions available to developers are

demonstrated by the python examples bundled with the CARLA
repository. Some of the notable include:

 setting weather conditions, which affect traction

and camera sensor data
 setting and changing maps, scenarios
 accessing vehicles in the simulation and reading or

modifying properties, such as position, speed
 spawning vehicles, removing vehicles
 controlling traffic lights
 Comparing world positions, generating paths

between positions following road laws
 converting between graphical coordinates and

geoSat coordinates

ROS INTEGRATION
One of the benefits of ROS is its ability to separate

development amongst many packages and create applications
that combine those packages together for a specific controls
stack. The ROS integration furthers this development ideology
by allowing an additional package to be developed alongside a
control stack dedicated for a physical vehicle, delivering sensor
data to said package in the same way the physical vehicle would.

CARLA data is real world data, allowing it to be tested and
trained without the physical vehicle, and all the danger and
limitations that imposes.

In order to have ROS integrate with CARLA, the
carla_ros_bridge package needs to be launched alongside the
vehicle controls stack and the user developed CARLA
integration scripts, all of which can be done within a single
launch file. The ros-bridge communicates with CARLA,
relaying information such as map, synchronization, simulation
time, and basic information about any dynamic object placed in
the map. This is illustrated in Figure 2.

Furthermore, any vehicle matching one of the names inside
a list will be given a large host of topics ranging from sensor data
to vehicle position, as well as the ability to control the vehicle
either through a throttle, steering model, or an Ackermann drive
model. These topics return simulated sensor data in the standard
ROS format, speeding up development times.

UAB School of Engineering - Mechanical Engineering - Journal of the ECTC, Volume 18 Page 54

Figure 2. RVIZ Display showing topic information from
sensors and diagnostics generated from the ros_bridge.

Only ROS controlled vehicle exists in this example.

Another package inside the ros-bridge exists for quickly

configuring vehicles and sensor arrays, as well as providing a
launch file to quickly spawn the vehicle into the environment for
control. Through a json file, a list of sensors, their type, name,
position relative to the ground center of the car (in meters). Data
created by these sensors can be found in the topics:

carla/(VEHICLE_NAME)/(SENSOR_NAME)

Finally, a ROS package exists that can convert a pose in the
environment to a path from the vehicle to the pose following road
laws. This is particularly useful for testing vehicle controls and
path following without having to calculate the path itself with
sensor data.

EXAMPLE PACKAGE
This next section gives an overview on the specifics to

create a ROS package that will:
 Connect the ros-bridge to the CARLA process
 Spawn in an ego-vehicle with a specific sensor

array and vehicle type

model or an Ackermann model
 Enable and disable built in autopilot
 Send basic motor commands
 Receive and process LIDAR data coming from the

ego-vehicle

LAUNCHING ROS-BRIDGE
First, after creating the catkin package, a launch file will be

created to spawn instances of all of the vehicles nodes, as well as
ros-bridge. Common organizational practices for ROS dictate a
config, include, launch, and src folder be created inside the
package to help organize all of the files needed to run the vehicle.
Thus, the launch file will be located at:

${PACKAGE}/launch/${NAME}.launch

While this specific example utilizes a single launch file,
separating individual parts into their own launch files helps
modularize the system, allowing for multiple launch files to be
created to initialize different parts of the system for different
environments or testing purposes.

The launch file is written in a markup language akin to
XML. As a result, any piece described hereafter can theoretically
be placed inside any launch file, as long as the hierarchy is
properly respected.

Finally, it is recommended to mask any potentially variable
information at the top of the launch file with default values, such
that any of them can be quickly modified from the command line
without need to modify the launch file. In order to create an
argument with a default value, use the following command as the
first child of the launch node:

<arg name='NAME' default='VALUE'/>

where NAME is the name to be referenced both in the command
line and in the launch file, and VALUE is the default value to be
used if no argument is passed via the command line. Both NAME
and VALUE are encased in single quotes. The argument can
thereafter be used anywhere a string would be used, most often
signified by single or double quotes.

For example, the following would initialize the HOST
argument with the value localhost, and will be used in the
creation of the ros-bridge:

<arg name='host' default='localhost'/>

<include file="$(find carla_ros_bridge)/launch/carla_ros_b
ridge.launch">

 <arg name='host'

 value='$(arg host)'/>

...

In essence, using the $ identifier specifies that the immediate
portion of the string encapsulated in parentheses should contain
a command and value pair. For arguments, the command is arg
and the value is the name of the argument intended to be used. If
the argument is not found in the file above the current line or
does not have a value set for it (which can be prevented by setting
a default value), the launch file will throw an error, and will
shutdown any ROS nodes created by the file.

In order to boot the ros-bridge with the launch file, an
include child pointing to the ros-bridge launch file developed by
CARLA must exist inside the launch file, such as:

UAB School of Engineering - Mechanical Engineering - Journal of the ECTC, Volume 18 Page 55

<!-- BOOT ROS <-> CARLA INTERFACE -->

 <include

 file="$(find carla_ros_bridge)/launch/carla_ros_
bridge.launch">

 <arg name='host'

 value='$(arg host)'/>

 <arg name='port'

 value='$(arg port)'/>

 </include>

As noted previously, two arguments were stored: host and
port. By storing this information as arguments, it allows the ROS
package to point to any CARLA instance running on any port or
IP, including ones not located on the local machine.

SPAWN EGO-VEHICLE
The term ego-vehicle indicates a vehicle in the CARLA

simulation that is intended to be interfaced with using the ros-
bridge. As such, any vehicle named ego-vehicle (or other custom
names if a custom config file is loaded) will have publisher and
subscriber topics created so that sensor information can be read
and vehicle commands can be sent.

Spawning an ego-vehicle is done in a similar manner to
booting ros-bridge, however an additional file is needed in order
to communicate vehicle and sensor information. A JSON file is
created and passed to a CARLA developed launch file indicated
which vehicles the ego-vehicle can choose from (ranging from
an exact model to vehicle size description).

JSON is a data structure designed to easily represent key
value pairs in a hierarchical manner, allowing for definitions of
parent-child relationships.

 This specific JSON file uses the following format:

{

 "sensors": [

 {

 SENSOR 1

 },

 {

 SENSOR 2

 }

]

}

The outer curly braces indicated the vehicle parent, that has
a list of child sensors in an unordered list. Each sensor can be
described with the following structure:

{

 type": "sensor.camera.rgb",

 "id": "front",

 "x": 2.0, "y": 0.0,

 "z": 2.0, "roll": 0.0,

 "pitch": 0.0, "yaw": 0.0,

 ...

}

Each field shown is mandatory for every sensor to
successfully initialize. Type is a String matching one of the eight
identifiers for each sensor supported in CARLA, while id is the
specific reference identifier referenced in code to retrieve sensor
data. X, Y, Z specify the sensors position relative to the vehicles
center of geometry, or the mean of all X, Y, and Z points in the
model. Furthermore, Positive X moves towards the front of the
vehicle, Positive Z moves towards the Roof of the vehicle, and
Positive Y moves towards the right side of the vehicle. Finally
roll pitch and yaw represent the angles from the sensor origin for
each dimension.

Finally, each sensor may require additional information in
order for it to be properly initialized, such as camera image size.
Other properties can be optional, with included defaults if not
specified in the JSON file. All of these specifics can be found on
the CARLA documentation for cameras and sensors [14].

Any number of supported sensors may be strung together
inside the sensors list and will each create sensor topic
information as denoted in the ros-bridge github repository. In the
launch file, another $ denoted argument will be used to indicate
the location of the sensor information JSON file:

<arg name="sensor_definition_file"

default="$(find autonomous_server)/config/sensors.json"/
>

The find command utilizes a ROS feature that, if a package
is successfully compiled, and the devel/setup.bash for the
specific workspace has been sourced, indexes the location of the
package in a global list. This has the benefit of allowing named
references to packages return full path information, allowing for
development to be system independent.

In essence, the find command will lookup the specified
package name from the global list of packages, and return the
full system path to its root directory, allowing for files inside the
package to be directly referenced.

UAB School of Engineering - Mechanical Engineering - Journal of the ECTC, Volume 18 Page 56

Like the ros-bridge initialization, the ego vehicle will be
created by including the CARLA developed
carla_ego_vehicle.launch file from within the carla_ego_vehicle
package. This launch file includes argments to identify a string
to be passed to the vehicle filter, the sensors JSON file created
previously, and the name of the vehicle, often defaulted to
ego_vehicle.

With these two files included, the current launch file will
connect to the CARLA instance, spawn a vehicle from the
vehicles matching the filter, equip it with a sensor array defined
by the sensors JSON file, and start publishing topics for each
sensor, as well as general vehicle information, world
information, and diagnostic information.

CONTROL THE VEHICLE
Out of the box the carla-ros-bridge supports 3 methods of

commanding the ego-vehicle to move: autopilot, throttle / steer,
and Ackermann control.

Autopilot is a useful command for testing, and simulating
semi-random pedestrians and other outside vehicles. Each map
has what is in essence a navigation mesh, or a set of pre-
programmed lines following each road lane. When a vehicles
CARLA based autopilot is enabled, the vehicle simply picks a
random location it can traverse to on the map, and then follows
the navigation mesh to its destination. It will also stop for
vehicles in its path, stop at stop lights and stop signs, and wait
for a left turn to be safe before taking it.

Another method is the throttle / steer method, whereby each
axis of movement is set to a specific percentage. Steering can be
anywhere from 100% left (written as -1.0), to centered (written
as 0.0), or 100% right (written as 1.0). Likewise, throttle and
brake are set as a value between 0 and 1, fully off and fully on
respectively. Vehicle gear can also be set to an integer from 1 to
n, n being the highest gear available in the specific ego vehicle.
And finally, a Boolean variable represents whether the
handbrake is being applied or the vehicle is in a reverse gear.
This model is the backbone for all other control models, as even
the Ackermann model provided by CARLA translates into the
throttle / steer model.

Finally, there exists a pre-built Ackermann control module,
utilizing a simple PID algorithm, which is very useful for
developing an autonomous vehicle in CARLA intended to be
used in the real world. Using the ROS AckermannDrive
message, the navigation stack only calculates a desired forward
velocity, acceleration, jerk, and desired wheel angle and angle
velocity. Utilizing formulas found from an article written by
Jarrod Snider [15], vehicle velocity and wheel angle can easily
be calculated given a path and the vehicles relative position to
the path.

One Caveat using the Ackermann controller is that it needs
to also be initialized alongside the ros-bridge. Doing so is very
similar to the ros-bridge, by including the
carla_ackermann_control.launch file inside the one of the
packages launch files.

BASIC LIDAR PROCESSING WITH PCL
Point Cloud Library is the most popular point cloud

processing solution for ROS packages, and as such has great
support in forms of tutorials and internet help boards. It is
illustrated in Figure 3. Keep in mind that, at the time of this
paper, no official or feature complete version of PCL has been
translated to python 2.7, and thus it is recommended that
packages do all Point Cloud processing in C++ nodes.

The overall workflow of using PCL in ros is:

1. Subscribe to a sensor_msgs::PointCloud2 topic
from a lidar sensor

2. Convert the sensor_msgs::PointCloud2 data to
pcl::PCLPointCLoud2 data

3. Process the Point Cloud
4. Publish either the resultant Point Cloud as a

sensor_msgs::PointCloud2 or other information
that can inform the vehicle of its calculations

Figure 3. RVIZ Display showing filtered LIDAR data using
a voxel grid filter to trim dense sections of the point cloud

collide with the vehicle in the vertical axis. A top down
heatmap is generated in the bottom left.

The first step shall be left to the reader, as that process does

not differ from subscribing to any other ROS topic in C++.
Inside the subscriber call back, to translate the sensor_msgs

point cloud to the pcl point cloud, use:

void lidar_cb(const sensor_msgs::PointCloud2ConstPtr&
cloud_msg)

{

 pcl::PCLPointCloud2::Ptr cloud(new pcl::PCLP
ointCloud2);

 pcl_conversions::toPCL(*cloud_msg, *cloud);

the call back takes a reference to a pointer pointing to the data
collected from the lidar sensor, and is converted to its pcl
counterpart, and then stored inside the memory address pointed
to by the pcl pointer named cloud.

After this is complete, any tutorial operating on
pcl::PointCloud2 data can be followed, in this specific example
a voxel grid filter will be used to trim any groups of points that
are too close to one another. This will vastly lower the

UAB School of Engineering - Mechanical Engineering - Journal of the ECTC, Volume 18 Page 57

computational cost of working on the lidar data, while keeping
its shape intact. This can be done by:

pcl::PCLPointCloud2::Ptr cloud_voxel(new pcl::PCLPoint
Cloud2);

//voxel grid filter

pcl::VoxelGrid<pcl::PCLPointCloud2> sor;

sor.setInputCloud(cloud);

sor.setLeafSize(0.25, 0.25, 0.25);

sor.filter (*cloud_voxel);

A pointer is created to point to the resultant data. A voxelGrid
filter is then created, given the converted point cloud as its input,
given a leaf size, then computed, returning its results in the
pointer created.

This is the basic framework with which point clouds are
manipulated in PCL: initialize a pointer and a filter, set its input
and variables, and then compute the result and store it in the
memory location pointed to by the pointer. A chain of these can
also be created, where the pointer of the first result becomes the
input for the second filter, and so on.

Once all work on the lidar data has been completed, it can
often be useful to publish its filtered output for use in other
nodes. This is done by once again converting the data back into
its original form, and then published on a separate topic, like so:

sensor_msgs::PointCloud2 output;

pcl_conversions::fromPCL(*cloud_plane, output);

REFERENCES
[1] Dosovitskiy A., Ros, G., Codevilla, F., Lopez A. and Koltun,

Proceedings of the 1st Annual Conference on Robot Learning,
pp. 1-16.
[2] Muller M., Dosovitskiy A., Ros, G., Codevilla, F., Lopez A.

1st Annual Conference on Robot
Learning, pp. 1-16.
[3] Dosovitskiy A., Ros, G., Codevilla, F., Lopez A. and Koltun,

https://carla.readthedocs.io/en/latest/

from http://releases.ubuntu.com/16.04/

https://www.balena.io/etcher/

create-a-usb-stick-on-macos#0

http://wiki.ros.org/kinetic/Installation/Ubuntu
[8] Dosovitskiy A., Ros, G., Codevilla, F., Lopez A. and Koltun,

https://carla.readthedocs.io/en/latest/getting_started/

https://github.com/carla-simulator/carla

https://github.com/carla-simulator/ros-bridge

https://github.com/carla-simulator/ros-
bridge

https://github.com/eric-wieser/ros_numpy

http://wiki.ros.org/pcl
[14] Dosovitskiy A., Ros, G., Codevilla, F., Lopez A. and Koltun,

https://carla.readthedocs.io/en/stable/cameras_and_sensors/

Robotics Institute, Carnegie Mellow University, Pittsburgh,
Pennsylvania

