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ABSTRACT 
With the rise of Virtual Reality (VR) in the commercial 

market, more use cases are being discovered and implemented 
for this technology in the realm of remotely operated vehicles 
(ROV). This paper describes the process of creating a system 
that is able to demonstrate the uses VR can provide over typical 
ROV control schemes. This is shown through the use of an 
embedded system capturing live video footage on a four-wheel 
robot, sending the video wirelessly to a ground station, and 
displaying that video in VR to the operator. Simultaneously, the 
ground station is capturing inputs from the operator in VR, 
sending the controls to the ROV, and reacting in real-time to 
these inputs.  

This method of using VR inputs for the end user allows for 
a more user-friendly control scheme and provides a familiar 
and easily customizable interface for the user. Without the 
constraints of a physical control panel for the ROV operator, 
changing the layout of the inputs, while keeping the same 
implementation for sending messages, becomes easier and 
cheaper.  

KEY WORDS: Virtual Reality (VR), Remotely Operated 
Vehicles (ROV), OpenCV, Unity 

INTRODUCTION 
The use of virtual reality (VR) to operate remote vehicles 

shows promise to provide a large advantage over traditional 
ROV operator interfaces. Where physical remotes and work 
stations provide consistency and feedback, VR versions of this 
offer flexibility and customization [1]. This project 
demonstrates a use of customization by creating a virtual work 
environment and controlling a mobile robot with external 
devices including a horn, lights, and wheels.  

Currently, other fields, such as flight simulators [2] or 
underwater mapping [3] allow for VR and non-VR control of 
virtual and remote systems, but every such project has a 
specific, custom configuration of the operational interface. This 
project attempts to create a system that is capable of working 
with any hardware system and that requires minimal 
adjustment. A simple new protocol is developed to integrate 
physical actuators with virtual inputs. While the system 

developed was developed to be adaptable for use in any system; 
in this demonstration, it is installed in a land-based remotely 
operated vehicle (ROV), shown in Figure 1. 

 

  
Figure 1. VRBot Proof of Concept 

 
Projects are already exploring the use of VR to operate 

vehicles such as for underwater robots that can be controlled 
and operated in VR [4-6]. Another research project allowing 
users to tour a location using a tele-operated VR Robot [7] has 
been shown to be successful, but does not provide real-time 
control. NASA explored control of their complex systems using 
VR [8] and showed that using a system such as this allowed an 
operator to maintain improved control of craft operation and to 
maintain understanding of vehicle surroundings. 

In addition, to facilitate adaptation to multiple hardware 
layouts, this work explores the ability to test control layouts 
without the need of any physical ROV hardware. Here, the 
simulation of an ROV and modification of the operator 
interface can be performed in a fully virtual environment. 
Within this environment, new features, such as lights or a 
speedometer, can be shown to the user, tested, and iterated 
within seconds. 
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HARDWARE STRUCTURE 
The hardware loop in this project is composed of four main 

components working together though a software stack. The four 
components, appearing in Figure 2, are the ground station 
computer, the Virtual Reality headset, the embedded system 
running on the ROV, and the Arduino interfacing between 
sensors and other physical devices. 

 
Figure 2. Hardware Structure 

The ground station computer performs all of the heavy 
computation in terms of video processing power, as it is 
running a VR simulation world where the operator sits in a 
chair and is able to control the ROV. Connected to the ground 
station is the VR headset, an Oculus Rift in this case, which 
provides the real-time orientation and movement data to render 
and display a VR scene.  

The ground station connects to the embedded system 
through a Wi-Fi link, which is managed by a router 
broadcasting a local network. As the software is designed to be 
hardware independent, any small and lightweight embedded 
system would work, but in this case a Jetson Nano and 
RaspberryPi were both tested and used. The embedded system 
pulls images from a USB camera and sends data to an Arduino 
Uno over a separate USB serial connection. The Arduino takes 
the information from the embedded system and controls 
actuators, lights, and a horn on the ROV.  

SOFTWARE OVERVIEW 
In order to achieve real-time performance, the goal of the 

software stack is for information to transmit from the ground 
station to the ROV as quickly and simply as possible to 
minimize latency. With this goal in mind, the embedded system 
is mainly responsible for passing information through it without 
modifying it or creating a bottleneck for the system as a whole.  

 
Figure 3. Software Structure 

Three main nodes in the software architecture interact with 
each other through two different protocols. Figure 3 shows the 

 and how they interact with 
each other. The first system, located within the ground station, 
is the Unity environment. Unity is a game engine that allows 
easy creation of a virtual 3D environment. Inside Unity, objects 
such as buttons and levers interact with each other, but only one 
object communicates outside of the Unity world. This object 
handles the passing of information to and from the embedded 
system on the ROV though the use of network sockets and the 
ZeroMQ network package.  

Once information is sent through the network socket, it is 
picked up by a Python script running onboard the ROV. This 
Python process decodes the information from the socket using 
ZeroMQ and outputs base64 encoded images back through the 
socket into Unity. These images from the camera are captured, 
resized, and compressed using the computer vision library 
OpenCV. Simultaneously, the Python process converts the 
information from unity into a string encoded with information 
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that is relayed to the Arduino connected via serial USB. This 
string message is loaded with all the information about the 
desired state of the robot. This includes the desired state of the 
horn, lights, and wheel speeds. Because all this information is 
being passed through one message, all of these actions can take 
place simultaneously on the robot. For example, the user is able 
to simultaneously turn on the lights, and honk the horn. 

Once the serial messages are in the Arduino, a short 
decoding method is called that takes the full string and extracts 
the important information from it. From there, the motors, 
connected to an Arduino motor shield, are sent a PWM signal 
and instructed to turn forward or backwards at a particular 
speed. The horn, a piezo quartz crystal buzzer, is also connected 
and sent a tone to play, emulating a car horn. Finally, a string of 
LEDs wired together form the headlights that can be toggled on 
or off. 

UNITY ENVIRONMENT 
Unity provides a framework with which to create virtual 

environments for a ground station operator to interact with the 
ROV in the real world. By creating various 3D objects in Unity, 
an entire virtual command station is created with rules that 
govern how they move and fit together.  

Along with the base Unity assets, the SteamVR package is 
imported into the project providing a number of useful scripts 
and objects to facilitate quick and easy VR development and 
provides a Player object that automatically connects the VR 
headset to Unity. Along with the headset connection, 

flipping switches by setting a few parameters in the Unity 
interface. These base interactions were used to create a simple 
control scheme where the user is presented with two joysticks, 
one on each side of the chair th
chair and control joysticks are shown in Figure 4. Pushing 
either joystick forward turns the corresponding set of wheels on 
the ROV forward. Likewise, pulling the joystick back will 
rotate the wheels in the opposite direction. This control method 

ease. 
 

 
Figure 4. Unity Control Panel 

The Unity environment attempts to give the illusion to the 
ground station operator that they are inside the ROV controlling 
it. Figure 5 displays a screenshot of the live video feed on a 

large virtual concave screen placed in front of the user in VR 
displaying the live video from a 180° camera. The screen 
simulates a world for the user representing a glass window 
from onboard a small craft. The operator is placed in a chair 
that automatically resizes to fit their body to the arm rests, and 
in front of the user is a button to emulate a horn for the ROV. 

 

 
Figure 5. Unity Live Video 

ZEROMQ IMPLEMENTATION 
ZeroMQ is a networking library designed to make 

implementation of socket programming simple, easy, and 
scalable. This project uses ZeroMQ as a method for reliably 
and quickly sending text-based messages around a local 
network. Using ZeroMQ, real-time video can be streamed 
wirelessly, and commands can be distributed regardless of the 
target language or architecture in which they exist.  

This implementation of ZeroMQ called for two nodes, a 
ground station and embedded system, to communicate with 
each other simultaneously and exclusively. From these 
requirements, a PAIR socket was chosen. A PAIR socket allows 
for two independent IP addresses to be bound together through 
a specific socket number. When a PAIR socket is implemented, 
no other traffic may communicate over that socket, and 
messages sent will only ever go to these two paired nodes. For 
this implementation, it was very convenient to know that the 
two nodes talking over the socket were only ever going to send 
messages to each other.  

Along with the type of sockets being bound to, a message 
queue must be established. A protocol must be developed for 
situations such as when the embedded system sends two 
consecutive messages to the ground station before either is 
read. As this project was designed to be as close to real-time as 
possible, it was decided that newer messages should take 
precedent over old messages. Because of this, a CONFLATE 
option is passed to ZeroMQ with a value of one. This 
configures the ZeroMQ object to only ever store one message 
at a time, and, if a new one comes in, it should replace the old. 

RESULTS AND FUTURE IMPLEMENTATIONS 
Feedback was solicited from several operators in an 

attempt to confirm proper software operation and test the VR 
l reactions indicated the VR 

controls were easy to pick up, but difficult to master. The 
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operate in an enclosed space. A second limitation of the project 
is the requirement of a stable local Wi-Fi network for 
continuous operation of the vehicle. The router used provided a 
limited range of roughly 30 ft. with no object in the path. As the 
ROV ranges further from the Wi-Fi router, the slower video 
feed makes operation of the craft more difficult. 

Future plans for the project include the integration of 
neural networks and more advanced computer vision into the 
system. A plan to provide object tracking on the live video 
involves the user identifying a desired object to track by 
defining a bounding box on the dome screen in VR. The 
bounding box would be passed to the embedded system, where 
either a neural network script or a computer vision algorithm 
would be used and track the object as it moves in the operators 
view.  

In addition to object tracking, a PID implementation for 
speed control is desired for the ROV. By adding an inertial 
measurement unit and/or wheel encoders to the embedded 
system, ROV velocity can be calculated and controlled. Once 
the current velocity is measured, it can be compared against a 
desired user-defined speed and fed into a closed PID loop to 
drive the error toward zero.  

Finally, creating a customizable user interface for the user 
is desired. For the user to feel natural when operating any kind 
of craft, they need to be able to customize the interface for 
comfort and familiarity. Creating tools for the operator to make 
adjustments to the size, placement, colors, and orientation of 
their workspace is important to allow them to feel in control of 
the ROV.  
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