
UAB School of Engineering - Mechanical Engineering - Journal of the ECTC, Volume 18 Page 58

Journal of UAB ECTC
Volume 18, 2019

Department of Mechanical Engineering
The University of Alabama, Birmingham

Birmingham, Alabama USA

REAL-TIME VIRTUAL REMOTELY OPERATED VEHICLE

Tyler Gragg, Kevin McFall
Kennesaw State University

Marietta, Georgia USA

ABSTRACT
With the rise of Virtual Reality (VR) in the commercial

market, more use cases are being discovered and implemented
for this technology in the realm of remotely operated vehicles
(ROV). This paper describes the process of creating a system
that is able to demonstrate the uses VR can provide over typical
ROV control schemes. This is shown through the use of an
embedded system capturing live video footage on a four-wheel
robot, sending the video wirelessly to a ground station, and
displaying that video in VR to the operator. Simultaneously, the
ground station is capturing inputs from the operator in VR,
sending the controls to the ROV, and reacting in real-time to
these inputs.

This method of using VR inputs for the end user allows for
a more user-friendly control scheme and provides a familiar
and easily customizable interface for the user. Without the
constraints of a physical control panel for the ROV operator,
changing the layout of the inputs, while keeping the same
implementation for sending messages, becomes easier and
cheaper.

KEY WORDS: Virtual Reality (VR), Remotely Operated
Vehicles (ROV), OpenCV, Unity

INTRODUCTION
The use of virtual reality (VR) to operate remote vehicles

shows promise to provide a large advantage over traditional
ROV operator interfaces. Where physical remotes and work
stations provide consistency and feedback, VR versions of this
offer flexibility and customization [1]. This project
demonstrates a use of customization by creating a virtual work
environment and controlling a mobile robot with external
devices including a horn, lights, and wheels.

Currently, other fields, such as flight simulators [2] or
underwater mapping [3] allow for VR and non-VR control of
virtual and remote systems, but every such project has a
specific, custom configuration of the operational interface. This
project attempts to create a system that is capable of working
with any hardware system and that requires minimal
adjustment. A simple new protocol is developed to integrate
physical actuators with virtual inputs. While the system

developed was developed to be adaptable for use in any system;
in this demonstration, it is installed in a land-based remotely
operated vehicle (ROV), shown in Figure 1.

Figure 1. VRBot Proof of Concept

Projects are already exploring the use of VR to operate

vehicles such as for underwater robots that can be controlled
and operated in VR [4-6]. Another research project allowing
users to tour a location using a tele-operated VR Robot [7] has
been shown to be successful, but does not provide real-time
control. NASA explored control of their complex systems using
VR [8] and showed that using a system such as this allowed an
operator to maintain improved control of craft operation and to
maintain understanding of vehicle surroundings.

In addition, to facilitate adaptation to multiple hardware
layouts, this work explores the ability to test control layouts
without the need of any physical ROV hardware. Here, the
simulation of an ROV and modification of the operator
interface can be performed in a fully virtual environment.
Within this environment, new features, such as lights or a
speedometer, can be shown to the user, tested, and iterated
within seconds.

UAB School of Engineering - Mechanical Engineering - Journal of the ECTC, Volume 18 Page 59

HARDWARE STRUCTURE
The hardware loop in this project is composed of four main

components working together though a software stack. The four
components, appearing in Figure 2, are the ground station
computer, the Virtual Reality headset, the embedded system
running on the ROV, and the Arduino interfacing between
sensors and other physical devices.

Figure 2. Hardware Structure

The ground station computer performs all of the heavy
computation in terms of video processing power, as it is
running a VR simulation world where the operator sits in a
chair and is able to control the ROV. Connected to the ground
station is the VR headset, an Oculus Rift in this case, which
provides the real-time orientation and movement data to render
and display a VR scene.

The ground station connects to the embedded system
through a Wi-Fi link, which is managed by a router
broadcasting a local network. As the software is designed to be
hardware independent, any small and lightweight embedded
system would work, but in this case a Jetson Nano and
RaspberryPi were both tested and used. The embedded system
pulls images from a USB camera and sends data to an Arduino
Uno over a separate USB serial connection. The Arduino takes
the information from the embedded system and controls
actuators, lights, and a horn on the ROV.

SOFTWARE OVERVIEW
In order to achieve real-time performance, the goal of the

software stack is for information to transmit from the ground
station to the ROV as quickly and simply as possible to
minimize latency. With this goal in mind, the embedded system
is mainly responsible for passing information through it without
modifying it or creating a bottleneck for the system as a whole.

Figure 3. Software Structure

Three main nodes in the software architecture interact with
each other through two different protocols. Figure 3 shows the

 and how they interact with
each other. The first system, located within the ground station,
is the Unity environment. Unity is a game engine that allows
easy creation of a virtual 3D environment. Inside Unity, objects
such as buttons and levers interact with each other, but only one
object communicates outside of the Unity world. This object
handles the passing of information to and from the embedded
system on the ROV though the use of network sockets and the
ZeroMQ network package.

Once information is sent through the network socket, it is
picked up by a Python script running onboard the ROV. This
Python process decodes the information from the socket using
ZeroMQ and outputs base64 encoded images back through the
socket into Unity. These images from the camera are captured,
resized, and compressed using the computer vision library
OpenCV. Simultaneously, the Python process converts the
information from unity into a string encoded with information

UAB School of Engineering - Mechanical Engineering - Journal of the ECTC, Volume 18 Page 60

that is relayed to the Arduino connected via serial USB. This
string message is loaded with all the information about the
desired state of the robot. This includes the desired state of the
horn, lights, and wheel speeds. Because all this information is
being passed through one message, all of these actions can take
place simultaneously on the robot. For example, the user is able
to simultaneously turn on the lights, and honk the horn.

Once the serial messages are in the Arduino, a short
decoding method is called that takes the full string and extracts
the important information from it. From there, the motors,
connected to an Arduino motor shield, are sent a PWM signal
and instructed to turn forward or backwards at a particular
speed. The horn, a piezo quartz crystal buzzer, is also connected
and sent a tone to play, emulating a car horn. Finally, a string of
LEDs wired together form the headlights that can be toggled on
or off.

UNITY ENVIRONMENT
Unity provides a framework with which to create virtual

environments for a ground station operator to interact with the
ROV in the real world. By creating various 3D objects in Unity,
an entire virtual command station is created with rules that
govern how they move and fit together.

Along with the base Unity assets, the SteamVR package is
imported into the project providing a number of useful scripts
and objects to facilitate quick and easy VR development and
provides a Player object that automatically connects the VR
headset to Unity. Along with the headset connection,

flipping switches by setting a few parameters in the Unity
interface. These base interactions were used to create a simple
control scheme where the user is presented with two joysticks,
one on each side of the chair th
chair and control joysticks are shown in Figure 4. Pushing
either joystick forward turns the corresponding set of wheels on
the ROV forward. Likewise, pulling the joystick back will
rotate the wheels in the opposite direction. This control method

ease.

Figure 4. Unity Control Panel

The Unity environment attempts to give the illusion to the
ground station operator that they are inside the ROV controlling
it. Figure 5 displays a screenshot of the live video feed on a

large virtual concave screen placed in front of the user in VR
displaying the live video from a 180° camera. The screen
simulates a world for the user representing a glass window
from onboard a small craft. The operator is placed in a chair
that automatically resizes to fit their body to the arm rests, and
in front of the user is a button to emulate a horn for the ROV.

Figure 5. Unity Live Video

ZEROMQ IMPLEMENTATION
ZeroMQ is a networking library designed to make

implementation of socket programming simple, easy, and
scalable. This project uses ZeroMQ as a method for reliably
and quickly sending text-based messages around a local
network. Using ZeroMQ, real-time video can be streamed
wirelessly, and commands can be distributed regardless of the
target language or architecture in which they exist.

This implementation of ZeroMQ called for two nodes, a
ground station and embedded system, to communicate with
each other simultaneously and exclusively. From these
requirements, a PAIR socket was chosen. A PAIR socket allows
for two independent IP addresses to be bound together through
a specific socket number. When a PAIR socket is implemented,
no other traffic may communicate over that socket, and
messages sent will only ever go to these two paired nodes. For
this implementation, it was very convenient to know that the
two nodes talking over the socket were only ever going to send
messages to each other.

Along with the type of sockets being bound to, a message
queue must be established. A protocol must be developed for
situations such as when the embedded system sends two
consecutive messages to the ground station before either is
read. As this project was designed to be as close to real-time as
possible, it was decided that newer messages should take
precedent over old messages. Because of this, a CONFLATE
option is passed to ZeroMQ with a value of one. This
configures the ZeroMQ object to only ever store one message
at a time, and, if a new one comes in, it should replace the old.

RESULTS AND FUTURE IMPLEMENTATIONS
Feedback was solicited from several operators in an

attempt to confirm proper software operation and test the VR
l reactions indicated the VR

controls were easy to pick up, but difficult to master. The

UAB School of Engineering - Mechanical Engineering - Journal of the ECTC, Volume 18 Page 61

operate in an enclosed space. A second limitation of the project
is the requirement of a stable local Wi-Fi network for
continuous operation of the vehicle. The router used provided a
limited range of roughly 30 ft. with no object in the path. As the
ROV ranges further from the Wi-Fi router, the slower video
feed makes operation of the craft more difficult.

Future plans for the project include the integration of
neural networks and more advanced computer vision into the
system. A plan to provide object tracking on the live video
involves the user identifying a desired object to track by
defining a bounding box on the dome screen in VR. The
bounding box would be passed to the embedded system, where
either a neural network script or a computer vision algorithm
would be used and track the object as it moves in the operators
view.

In addition to object tracking, a PID implementation for
speed control is desired for the ROV. By adding an inertial
measurement unit and/or wheel encoders to the embedded
system, ROV velocity can be calculated and controlled. Once
the current velocity is measured, it can be compared against a
desired user-defined speed and fed into a closed PID loop to
drive the error toward zero.

Finally, creating a customizable user interface for the user
is desired. For the user to feel natural when operating any kind
of craft, they need to be able to customize the interface for
comfort and familiarity. Creating tools for the operator to make
adjustments to the size, placement, colors, and orientation of
their workspace is important to allow them to feel in control of
the ROV.

ACKNOWLEDGEMENTS
This project would not have been possible without the help

and support from Dr. Kevin McFall, Kennesaw State
atronics Engineering. The

played a large role in providing an interest in Virtual Reality in
addition to initial access to an Oculus Rift. Final thanks also go
out to some of the initial testers and friends that were there to
offer feedback for this project, Trevor Stanca, Brian Roney, and
Jessica Brummel.

REFERENCES
[1] Dorneich, Michael Christian, Stephen Whitlow, William
Rogers, Karen Feigh, and E. Robert. "Adaptive user interface
for semi-automatic operation." U.S. Patent 8,977,407, issued
March 10, 2015.
[2] Chin, Cheng Siong, Nurshaqinah B. Kamsani, Xionghu
Zhong, Rongxin Cui, and Chenguang Yang. "Unity3D serious
game engine for high fidelity virtual reality training of
remotely-operated vehicle pilot." In 2018 10th International
Conference on Modelling, Identification and Control (ICMIC),
pp. 1-6. IEEE, 2018.
[3] Martins, Alfredo, José Almeida, Carlos Almeida, Bruno
Matias, Stef Kapusniak, and Eduardo Silva. "EVA a Hybrid
ROV/AUV for Underwater Mining Operations Support."

In 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), pp.
1-7. IEEE, 2018.
[4] Hine, B., Carol Stoker, Michael Sims, Daryl Rasmussen,
Phil Hontalas, T. Fong, J. Steele et al. "The application of
telepresence and virtual reality to subsea exploration."
In Second Workshop on Mobile Robots for Subsea
Environments. 1994.
[5] Bonin-Font, Francisco, Miquel Massot Campos, and Antoni
Burguera Burguera. "ARSEA: A Virtual Reality Subsea
Exploration Assistant." IFAC-PapersOnLine 51, no. 29 (2018):
26-31.
[6] Candeloro, Mauro, Eirik Valle, Michel R. Miyazaki, Roger
Skjetne, Martin Ludvigsen, and Asgeir J. Sørensen. "HMD as a
new tool for telepresence in underwater operations and closed-
loop control of ROVs." In OCEANS 2015-MTS/IEEE
Washington, pp. 1-8. IEEE, 2015.
[7] Oh, Yeonju, Ramviyas Parasuraman, Tim McGraw, and
Byung-Cheol Min. "360 vr based robot teleoperation interface
for virtual tour." In Proceedings of the 1st International
Workshop on Virtual, Augmented, and Mixed Reality for HRI
(VAM-HRI). 2018.
[8] Nguyen, Laurent A., Maria Bualat, Laurence J. Edwards,
Lorenzo Flueckiger, Charles Neveu, Kurt Schwehr, Michael D.
Wagner, and Eric Zbinden. "Virtual reality interfaces for
visualization and control of remote vehicles." Autonomous
Robots 11, no. 1 (2001): 59-68.

