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Taxonomy and Survey of Collaborative Intrusion Detection

EMMANOUIL VASILOMANOLAKIS, SHANKAR KARUPPAYAH, MAX MUHLHAUSER,
and MATHIAS FISCHER, Technische Universitit Darmstadt/CASED

The dependency of our society on networked computers has become frightening: In the economy, all-digital
networks have turned from facilitators to drivers; as cyber-physical systems are coming of age, computer
networks are now becoming the central nervous systems of our physical world—even of highly critical
infrastructures such as the power grid. At the same time, the 24/7 availability and correct functioning of
networked computers has become much more threatened: The number of sophisticated and highly tailored
attacks on IT systems has significantly increased. Intrusion Detection Systems (IDSs) are a key component
of the corresponding defense measures; they have been extensively studied and utilized in the past. Since
conventional IDSs are not scalable to big company networks and beyond, nor to massively parallel attacks,
Collaborative IDSs (CIDSs) have emerged. They consist of several monitoring components that collect and
exchange data. Depending on the specific CIDS architecture, central or distributed analysis components
mine the gathered data to identify attacks. Resulting alerts are correlated among multiple monitors in order
to create a holistic view of the network monitored. This article first determines relevant requirements for
CIDSs; it then differentiates distinct building blocks as a basis for introducing a CIDS design space and
for discussing it with respect to requirements. Based on this design space, attacks that evade CIDSs and
attacks on the availability of the CIDSs themselves are discussed. The entire framework of requirements,
building blocks, and attacks as introduced is then used for a comprehensive analysis of the state of the art in
collaborative intrusion detection, including a detailed survey and comparison of specific CIDS approaches.
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1. INTRODUCTION

The Internet encompasses nearly every aspect of our lives today and has thus evolved
into a critical infrastructure with severe consequences in the case of partial and tem-
poral failure. At the same time, the number of sophisticated and specifically tailored
attacks on connected systems has increased considerably [Sood and Enbody 2013].
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Moreover, a large number of unreported or even completely unnoticed intrusion cases
may exist. One of the lessons we had to learn with the rise of the Internet is that we
cannot protect ourselves from all kind of possible attacks. IT systems developed by
humans cannot be totally secure.

For this reason, in addition to implementing software and designing hardware to be
as secure as possible, it is inevitable that IT systems must be continuously monitored
to ensure their correct functioning, for any kind of anomalies, or for signs of intrusions
and attacks. Thus, the monitoring process provides a second line of defense for any
kind of (critical) network infrastructure and IT systems. Such a task is usually taken
over by Intrusion Detection Systems (IDSs). An IDS monitors a host or a network and
analyzes it for signs of intrusions manifested by malicious behavior or security policy
violations. Thus, its goal is the detection of any attempt to compromise confidentiality,
integrity, availability, or simply to bypass the security mechanisms of a computer or
network [Barry and Chan 2010].

In regards to the position of their deployment, IDSs can be divided into either host-
based or network-based IDSs [Kabiri and Ghorbani 2005; Lazarevic et al. 2005]. Host-
based IDSs analyze events and the behavior of users on the granularity of single
devices. This allows us to collect detailed information, but introduces additional com-
putational overhead that can affect the overall performance of the monitored system.
Moreover, this requires a deployment of IDSs on all devices to be protected. In con-
trast, network-based IDSs can protect several devices or even entire networks at once
because they monitor only network traffic.

IDSs can be further categorized according to their deployed detection mechanisms
into signature-based and anomaly-based. Signature-based IDSs search for signatures
of known attacks and detect their occurrence in the network. Anomaly-based IDSs
attempt to initially learn the normal system state and afterward define any deviat-
ing behavior as an intrusion [Axelsson 2000; Chandola et al. 2009]. In contrast to a
signature-based detection, an anomaly-based detection can also detect unknown at-
tacks. However, usually, this comes at the cost of a high false-positive rate, whereas a
signature-based detection usually results in more false negatives.

In addition, IDSs can be based either on completely passive monitoring, or they can
also employ more active components such as honeypots. Honeypots are systems whose
value lies in being probed, attacked, or compromised [Spitzner 2003]. Their usage
can increase the overall accuracy of the IDS [Kabiri and Ghorbani 2005] because, by
definition, they exhibit a zero false-positive ratio.

The early IDSs have been mostly isolated single instances for monitoring a single
system or a single network by carrying out local analysis for attacks. Hence, between
instances of such a stand-alone IDS, no communication and interaction takes place.
Obviously, such a solution will not detect sophisticated and highly distributed attacks.
Isolated IDSs will not be able to establish connections between malicious events occur-
ring at different places at the same time. Thus, for the protection of large networks and
large IT ecosystems, Collaborative IDSs (CIDSs) emerged. CIDSs consist of several
monitors that act as sensors and collect data. Furthermore, they usually contain one or
several analysis units carrying out the actual intrusion detection on the data obtained
from the sensors. In addition to improving the detection accuracy of a monitored net-
work, CIDSs can also significantly reduce the complex tasks of security administrators
[Goodall et al. 2004]. Depending on the specific CIDS, monitors and analysis units
can be also co-located. If not noted otherwise and for the remainder of this article, we
assume that a monitor is a combination of both a sensor and an analysis unit. CIDSs
enforce cooperation among different monitors and thus are more scalable than stand-
alone IDSs. CIDSs can be classified according to their communication architecture, as
shown in Figure 1, into centralized, decentralized, and distributed CIDS:

ACM Computing Surveys, Vol. 47, No. 4, Article 55, Publication date: May 2015.



Taxonomy and Survey of Collaborative Intrusion Detection 55:3

Centralized '. Decentralizedrl Distributed

5° & n
\ ﬁw,ﬂ&

Fig. 1. Overview of centralized, decentralized, and distributed IDS architectures that consist of monitors
(M) and analysis units (A).

—~Centralized CIDSs consist of several monitors that monitor the behavior of their
respective host or the network traffic passing by. These monitors share their data
with a central analysis unit; these data can be either alerts as a result of a local
detection or extracted data from the local network traffic. Hence, the analysis unit
is either applying alert correlation algorithms on top of received alerts or standard
detection algorithms on top of received network traffic data. Similar to isolated IDSs,
centralized CIDSs do not scale with the increasing size of the system that needs to be
protected. Moreover, the central analysis unit represents a performance bottleneck
and a Single Point of Failure (SPoF).

—Decentralized CIDSs usually employ a hierarchical structure of monitoring points
or multiple self-contained IDS deployments. Through this structure, they overcome
the performance bottleneck of centralized CIDSs because they employ preprocessing
and correlation of the monitored data within the hierarchy until the data converge
to a central analysis unit on top.

—Distributed CIDSs share the tasks of the central analysis unit equally among all
monitors, so that each monitor is also an analysis unit. Thus, distributed CIDSs
usually employ a Peer-to-Peer (P2P) architecture, in which monitored data are cor-
related, aggregated, and analyzed in a completely distributed manner among the
monitors.

Despite the fact that a lot of work has been done in surveying and classifying IDSs
[Debar et al. 1999; Axelsson 2000; Chandola et al. 2009; Barry and Chan 2010], only
a few focus specifically on CIDSs and their architecture [Bye et al. 2010; Zhou et al.
2010]. In particular, Zhou et al. [2010] presented a study of CIDSs and focused mainly
on the system architectures and the correlation of alert data. Their work differs from
ours in that they only briefly describe a few examples of existing CIDS proposals per
architecture. Hence, their focus was not on giving a detailed survey of CIDSs proposals,
nor it was on discussing attacks for CIDS evasion.

In this article, we define requirements for the successful deployment of CIDSs that
are intended for the protection of large IT systems and critical infrastructures. We dis-
assemble and reduce CIDSs to their basic building blocks and extensively discuss the
design space of each of them. On the basis of the requirements and identified building
blocks, we summarize attacks for CIDS evasion and attacks on the availability of CIDSs
themselves. Finally, the main contribution of this article is a detailed survey of cur-
rent CIDSs following the classification into centralized, decentralized, and distributed
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CIDSs. All solutions presented in this article are extensively discussed along with
defined requirements and building blocks, as well as the possible attacks.

The remainder of this article is organized as follows: In Section 2, we define the
requirements of CIDSs and subsequently present attacks on and evasion techniques of
CIDSs based on the scope of the attacker. Section 3 presents the design space for CIDSs
and proposes a disjunction of CIDSs into five main build blocks. In Sections 4 through
6, we present a survey of CIDSs and discuss all individual approaches with respect
to our requirements, the identified attacks, and the different CIDS building blocks. In
Section 7, we provide a detailed comparison of the discussed CIDSs. Finally, Section 8
concludes the article and summarizes research gaps and necessary future work.

2. REQUIREMENTS FOR CIDSs AND CORRESPONDING ATTACKS

In this section, we first summarize the requirements of CIDSs for deployment in large
networks and IT systems. Thereafter, we discuss attacks on CIDSs and how they affect
the requirements of CIDSs.

2.1. Requirements

A CIDS for protecting large networks or large IT systems has to fulfill the following re-
quirements; these have been partially introduced in our former work [Vasilomanolakis
et al. 2013]:

—Accuracy: Accuracy for IDSs is determined by the percentage of successfully de-
tected attacks and the corresponding percentage of undetected attacks (false nega-
tives). In addition, the number of falsely triggered alarms (false positives) also needs
to be taken into account to measure the accuracy of an IDS. An accurate IDS should
minimize both.

—Minimal overhead: Overhead arises in terms of computation and communication
effort. The techniques used to produce, collect, or correlate intrusion alerts must have
a low computational overhead. In addition, signaling inside the IDS (e.g., between
monitors, or between monitors and an analysis units) needs to be as minimal as
possible.

—Scalability: Scalability requires that the performance of the IDS increases linearly
with the size of the resources added, so that networks of arbitrary size can be pro-
tected [Hill 1990]. Therefore, the IDS should not contain bottlenecks or SPoF.

—Resilience: In the presence of failures in internal components and during attacks,
a CIDS should still maintain its availability and ensure an acceptable accuracy.
Hence, a CIDS should not only be resilient to system malfunctions and external
attacks like Denial of Service (DoS), but also to internal attacks from malicious CIDS
components and malicious systems in the protected network/system. For this reason,
a CIDS should prevent Single Point of Failures (SPoF's) and should provide graceful
degradation and fast restoration mechanisms to counter failures and attacks.

—Privacy: In a collaborative environment, exchanged alerts may include sensitive
information that needs to be protected and should not be shared or disclosed with
all components in a CIDS. This is particularly important for CIDS deployments that
share data across domains that require privacy protection for the involved users,
companies, and network providers.

—Self-configuration is the ability of the system to automatically adjust itself, without
the intervention of an administrator. In contrast to systems that require manual
configuration, this provides the ability of constructing less error-prone systems.

—Interoperability is the ability of the system to interoperate with instances
of the same system deployed in other networks and also across different IDS

ACM Computing Surveys, Vol. 47, No. 4, Article 55, Publication date: May 2015.
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Fig. 2. Possible network positions of attackers. M represents the different monitoring points of the CIDS.

implementations. For instance, this can be achieved via the utilization of standard-
ized formats such as the Intrusion Detection Message Exchange Format (IDMEF).

2.2. Attacks on CIDS

CIDSs are basically IT systems and thus they can be targets of attacks. Therefore,
before designing or analyzing such a system, it is essential to be aware of all the
possible weak links and vulnerabilities that these systems might exhibit.

Attacks on CIDSs can be classified into internal and external attacks based on the
scope of the attackers. In an external attack, the adversary may try to detect the
presence of a CIDS, launch evasion attacks, or attack specific components of the IDS
directly, for example by degrading its service availability via a Distributed Denial
of Service (DDoS) attack [Srivastava et al. 2011]. Internal attacks refer to malicious
behavior originated from within the monitored network. Thus, either a host within the
monitored network (network level) or a monitor that is part of the CIDS (monitor level)
has been compromised.

The different positions of the adversary with respect to the aforementioned classifica-
tions are shown in Figure 2. We consider three different network positions: an external
attacker (e.g., carrying out DDoS attacks), a malicious insider (e.g., performing covert
channel attacks), and a malicious monitoring point (e.g., distributing fake alerts).

2.2.1. External Attacks. External attacks have their origin outside the monitored net-
work and can be classified as CIDS disclosure and evasion attacks. Disclosure attacks
aim to detect the presence of CIDS monitoring points in the network as preparation
for subsequent evasion attacks to bypass the CIDS.

In Shinoda et al. [2005], a method for the discovery of passive monitors that publish
their results publicly via the Internet is presented. The assumption is that these results
(e.g., periodically updated graphs that visualize the top targeted ports) provide enough
information to trace the location of monitors. A similar but more active approach
from Shmatikov et al. also assumes public CIDS output and introduces the concept
of probe-response attacks [Shmatikov and Wang 2007]. Hence, the attacker carries out
specifically adapted attacks so that the produced alerts of the CIDS contain a unique
mark. These marks are then used to identify monitoring points. In Bethencourt et al.
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[2005], passive sensor detection algorithms are presented that are based on probe-
response attacks.

Furthermore, Rajab et al. [2006] describe techniques for live population sampling
and methods for building sophisticated malware. In this case, the malware would try
to spread intelligently over the Internet by first targeting only active IP space addresses
and also by avoiding disclosure by CIDSs. The first part is done on-the-fly via sampling
techniques in the different IP layers, accompanied by sending messages (e.g., ICMP
packets). For avoiding disclosure, the assumption is that there is an increased proba-
bility that malware also attacks passive CIDS monitors while continuously choosing
random IP addresses for further propagation. To prevent this, Rajab et al. propose
the creation of malware with knowledge about the IP address ranges used by pas-
sive IDS monitors. Thus, such malware utilizes offline information regarding monitors
that has been acquired with probe-response attacks. In addition, the authors also dis-
cuss the idea of malware that actively uses probe-response attacks during its infection
phase.

Although CIDS disclosure techniques are interesting, they assume some kind of
feedback path from the CIDS to the attacker (e.g., attack results are visible on a public
website). Without such a feedback path, there are no automated techniques for an
adversary to successfully disclose monitoring points of a CIDSs.

After disclosing the presence of a CIDS, attackers can try to evade the local detection
mechanism of the monitoring points that can be either signature- or anomaly-based.
Signature-based evasion techniques modify attacks so that they no longer match the
known signatures (Cheng et al. [2011]). Anomaly-based evasion techniques (e.g., Debar
et al. [1999], Wagner and Soto [2002], Tan et al. [2002], and Fogla et al. [2006]) try to
masquerade attacks as legitimate and thus normal behavior. Because evasion attacks
focus on bypassing the IDS detection mechanism, they can be universally applied to
IDSs and thus are not restricted to CIDSs. For this reason, they are beyond the scope
of this article.

2.2.2. Internal Attacks. Internal attacks refer to malicious behavior originated from
within the monitored network. An insider can be classified as either a malicious monitor
that is part of the CIDS monitoring topology (monitoring level) or a malicious host
inside the monitored network.

Once a host is compromised within the protected network, a covert channel can be
set up between this host and an external entity. A covert channel tries to hide the very
existence of any communication [Lampson 1973; Zander et al. 2007] by using a channel
that is usually not intended for communication (e.g., timing information in between
packets or unused bits in the IP header). Covert channels presume a compromised host
within the protected network, and, depending on the specific channel used, they can
theoretically evade any CIDS.

It gets even worse when the attacker has compromised a component of the CIDS (e.g.,
a CIDS monitor) because this enables the adversary to launch subsequent attacks:
When the attacker has successfully infiltrated a CIDS, it can disclose other monitors.
Furthermore, a malicious user can compromise additional CIDS components or exploit
vulnerabilities in the CIDS protocol to let its own compromised components take over
more important positions or functions in the CIDS overlay, for example by producing
fake alerts, accusing other monitors of being compromised, or by conducting supporting
DoS attacks on other monitors. In addition, multiple compromised monitors can collude
to take down or compromise the rest of the monitored network [Fung 2011]. Moreover,
on the basis of a compromised monitor, the attacker can easily bypass the CIDS and
thus reduce its accuracy by selectively forwarding alerts to other monitors (e.g., by
suppressing alerts for specific detected attacks).
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A generic countermeasure against malicious insiders in distributed systems is the
adoption of reputation systems [Resnick et al. 2000; Marti and Garcia-Molina 2006],
such as EigenTrust [Kamvar et al. 2003]. In this case, each of the monitors estab-
lishes a certain trust level based on its detection behavior or other defined properties.
Whenever the trust level drops below a specified threshold, the monitor is considered
nontrustworthy and specific measures can take place (e.g., blacklisting of the specific
monitor).

Specifically adapted to CIDSs, Fung et al. [2009] propose a trust management model
that is based on Bayesian probabilities. In more detail, when monitoring points dis-
tribute their alert data, they also send request messages to determine the trustworthi-
ness of other monitors. This is achieved by a probabilistic model whose purpose is to
measure the satisfaction level of the received response messages. A number of similar
trust mechanisms for CIDSs to cope with insider attacks have been proposed [Fung
et al. 2008; Duma et al. 2006; Sen et al. 2008; Gil Pérez et al. 2013].

Although the use of such mechanisms protects the system from many of the afore-
mentioned attacks, it creates new opportunities for the attacker. A well-known problem
with reputation systems is the exploitation of the system itself when a highly trustwor-
thy peer(s) is compromised, which is called a betrayal attack [Fung et al. 2008]. If the
trust value of the compromised peer is not quickly degraded, the overall accuracy of
the system will be affected. In another variant, a so-called sleeper attack [Brinkmeier
et al. 2009], a malicious peer first behaves benignly over time to establish a certain
reputation level before it carries out the actual attack.

The topology of a CIDS might be completely static and preconfigured or, when mon-
itors are added to the system dynamically, a strict access control for them can be
enforced. However, in the highly unlikely case of a CIDS that is open and allows the dy-
namic inclusion of additional monitors, an attacker can launch a sybil attack [Douceur
2002] by adding a multitude of malicious monitors to the system [Fung 2011]. These
can be used to establish a more detailed view of the CIDS topology and to prepare
subsequent attacks, for example, to degrade the detection accuracy of the CIDS, to
out-vote honest nodes, to perform whitewashing of malicious peers, and to compromise
additional monitors. However, such attacks could be considered rare because most
CIDS topologies are usually rather static, and CIDSs may enforce strict authentication
mechanisms for new peers.

2.2.3. Attack Summary. In this section, we described external and internal attacks on
CIDSs. External attacks can disclose the presence of an IDS and decrease its detection
accuracy by evasion attacks. Alternatively, an attacker can issue DoS attacks to degrade
the service availability of the CIDS or to keep it busy with spoofed alerts to camouflage
its own attacks. An attacker who successfully compromises a host in the protected
network can launch a multitude of additional attacks, such as setting up a covert
channel to evade the IDS and thus decreasing its detection accuracy (e.g., to hide an
export of sensitive data). It gets worse when the attacker compromises a CIDS monitor
because this allows it to bypass the whole IDS, degrade its detection accuracy, or, in
the worst case, to bring it down completely.

Internal attacks are even more effective when combined with external ones. Thus,
compromised hosts or monitors may provide information to the outside that is used to
prepare subsequent external attacks. For instance, a sophisticated attack may include
an evasion technique to compromise a peer inside the monitored network without
triggering any alerts. Afterward, the adversary could use covert channels [Zander
et al. 2007] to send sensitive data outside the protected network.

Table I summarizes the aforementioned attacks with respect to the requirements
given in Section 2.1. Any kind of attack on an CIDS is also an attack on its main
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Table I. Relationship between Attacks on CIDSs and Requirements

CIDS Attacks

Signature Evasion
Anomaly Evasion
Denial of Service
Insiders (Compromised Monitor)
Insiders (Compromised Host)
Covert Channels
Note: Check marks v indicate a relation between an individual requirement and IDS attacks,

whereas checkmark symbols in brackets [v'] show an indirect relation. Finally, X shows the absence
of any relationship.
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task—namely, the detection of attacks on the protected system—and thus an attempt
to degrade the Accuracy of the respective CIDS. Interoperability and Self-Configuration
are functional requirements and hence do not directly relate to the aforementioned
attacks. However, DoS attacks may affect them. Overhead issues could arise through
malicious monitors, DoS attacks, or even network-based insider attacks. Furthermore,
Resilience is related to most CIDS attacks, whereas Scalability is affected only by
DoS attacks, in the context of the system not being able to support additional monitors
during such an attack. Attacks on the Privacy of CIDSs and user data are mostly related
to malicious monitoring points because the exchanged CIDS alert data may contain
sensitive information. For instance, this could be the case when several organizations
use a single and interconnected CIDS. However, insiders and covert channels may
also indirectly affect the Privacy of the involved participants in the monitored network
because they can disclose sensitive data to unauthorized, external parties.

3. DESIGN SPACE AND BUILDING BLOCKS OF CIDSs

An efficient and holistic CIDS that fulfills all aforementioned requirements needs to be
designed carefully. In the process, a multitude of challenges arise (e.g., minimizing the
exchanged data by maximizing the detection accuracy, deciding which monitors should
exchange information, and identifying the most efficient membership management
architecture for the monitors).

To structure the solution space for such a system, we propose a disjunction of the
CIDS into five main building blocks, as shown in Figure 3. We discuss each building
block, its design space, and the arising challenges in the remainder of this section.

3.1. Local Monitoring
Local monitoring can take place on either the host or network level. On the host level,
this requires monitoring of local activities to identify malicious behavior, which pre-
sumes monitoring functionality on all hosts in the network/system. In contrast, by
monitoring at the network level, an entire network can be protected by deploying mon-
itoring points only at strategically selected network locations (e.g., close to the ingress
and egress routers). Combinations of host- and network-level monitoring are also feasi-
ble and will increase the amount of monitored data, thus allowing for more fine-grained
attack detection in a CIDS.

Monitoring can be classified as either passive or active. Passive monitoring corre-
sponds to scanning local activity or the locally observed network traffic. In active
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monitoring, so-called honeypots are used to emulate the presence of vulnerable sys-
tems as promising attack targets. Because they have no productive use, any interaction
with them can be classified as an attack. Hence, honeypots produce no false positives,
although the false-negative rate can be high.

Detection engines are the individual mechanisms used in the analysis units of an
IDS to detect attacks in the data collected by passive sensors. Such detection is either
signature-based or anomaly-based; however, combinations of both mechanisms are also
possible. For instance, Bro IDS [Paxson 1999] contains, beyond signature-based, mod-
ules that can be utilized for anomaly detection. Signature-based detection requires
existing signatures for an attack and thus is unable to detect unknown attacks. Well-
known examples of signature-based IDSs include Snort [Roesch 1999] and Suricata!
[Albin and Rowe 2012]. Anomaly-based detection requires us to create a model of the

Ihttp://suricata-ids.org.
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normal behavior of the system. Each deviation from this model is then interpreted
as an anomaly and thus as an attack. Hence, an anomaly-based detection can also
detect unknown attacks. A comprehensive survey of anomaly-based detection methods
is given in Chandola et al. [2009] and Garcia-Teodoro et al. [2009].

3.2. Membership Management

Membership management has the task of ensuring overall connectivity of the mon-
itoring overlay of the CIDS by managing neighborhood relations between monitors.
Depending on the CIDS, such membership management can result in static or more
dynamic overlays that allow the dynamic inclusion and exclusion of monitors.

In the simplest case, the connections in the CIDS overlay are static and pre-
determined. Hence, an administrator needs to be involved whenever new components
are added to the system. Alternatively, the CIDS overlay can be set up dynamically.
This can be done either via a central server that has a global view of the system or via
a membership management protocol that runs at each monitor and that operates on
local knowledge only. This classification of static and dynamic overlays is also shown
in Figure 3. Nevertheless, as can be seen in Sections 4—7, the majority of CIDSs adopts
a dynamic overlay architecture.

Because the membership management controls the overlay neighborhood of CIDS
components, it can also enforce a certain structure on it. Hence, the arising monitoring
overlay can be either centralized, hierarchical, or completely distributed. In a central-
ized CIDS, all monitors are directly connected to a central analysis unit. A hierarchical
CIDS arranges all monitors in a hierarchy that is rooted in a central analysis unit.
Hence, monitors in lower tree levels report to the monitors above in higher tree levels.
In addition, hierarchical CIDSs include approaches that make use of a number of su-
pernodes. Distributed CIDSs prevent any SPoFs by deploying monitors in a flat overlay
without exposed components like a central analysis unit.

Furthermore, the membership management can either have an unstructured overlay
ID space or it can enforce a structure in case an additional location service is required;
for example, on the basis of a Distributed Hash Table (DHT) [Androutsellis-Theotokis
and Spinellis 2004]. Thus, a structured ID space would provide the advantage of a
guaranteed broadcast and search functionality. However, for CIDSs, this requires us to
map monitored data to a one-dimensional ID space. Therefore, multidimensional alert
correlation (cf. Section 3.3) cannot be achieved easily by structured CIDS overlays.
Depending on the observed attack scenario, selecting the right pattern as key for the
DHT is crucial. For instance, a CIDS whose purpose is to be able to detect attacks
originating from the same source has to use the source addresses from the monitored
packets as the DHT key.

3.3. Correlation and Aggregation

Once data have been obtained and analyzed by the local monitoring, possible alerts need
to be correlated and the monitored data need to be aggregated for later dissemination
to other monitors or analysis units (cf. Section 3.4).

We distinguish between single-monitor and monitor-to-monitor correlation mecha-
nisms. Single-monitor correlation correlates alerts/data locally at each monitor without
sharing this information with other monitors. Hence, plain alerts or locally correlated
alerts are shared either directly with an administrative interface of the CIDS or with
a central analysis unit that carries out further correlation. Monitor-to-monitor corre-
lation enforces sharing of alerts/data with other monitors that try to correlate this
information with local information. Therefore, such a correlation technique requires
sharing alerts or even more detailed data with other monitors. For this reason, sharing
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blacklists of malicious IP addresses still remains a single-monitor correlation approach
because this information is not input to the local correlation with local data.

Resulting and correlated alert patterns can have multiple dimensions, which is a
major challenge for collaborative intrusion detection [Vincent Zhou et al. 2009]. For ex-
ample, to detect an attack that is conducted from several source nodes simultaneously,
it is not sufficient to correlate alerts solely based upon the IP addresses of the attack
sources. Moreover, if more than one system is attacked at the same time, an alert cor-
relation via the IP addresses of the victims is also not meaningful. Hence, a plethora of
different patterns and combinations of them are imaginable for alert correlation. For
instance, combinations of source IP, destination IP, protocol, source port, destination
port, and even payloads of monitored packets can be used.

Alert correlation techniques in general can be classified into the following four dif-
ferent approaches [Zhou et al. 2010; Elshoush and Osman 2011]:

—Similarity-based correlation approaches (e.g., Valdes and Skinner [2001], Debar and
Wespi [2001], and Cuppens [2001]) correlate alerts based upon the similarity of
data or alert attributes. The similarity of two datasets is reflected by a score that
is computed by similarity functions. Depending on the produced score, the data are
then either correlated or not.

—Attack scenario-based approaches take causality into account when correlating
data/alerts. Thus, they allow detecting complex attacks that take place in several
steps. Such approaches (e.g., Dain and Cunningham [2001], Garcia et al. [2004], and
Eckmann et al. [2002]) usually require one to establish an attack database. Further-
more, most of these approaches need to be initialized by a training dataset. Therefore,
they provide high accuracy for known attacks, but fail in detecting unknown attacks.

—Multistage alert correlation techniques aim to detect unknown multistep attacks.
Most such approaches presume the existence of relations among the different stages
of an attack. Thus, they presume that an attack is conducted to prepare for another
one. Multistage alert correlation requires building up a library of attack steps. De-
pending on the overall attack, multiple steps are then mapped/correlated to attack
scenarios.

—Filter-based approaches (e.g., Porras et al. [2002]) attempt to filter irrelevant data or
alerts to reduce the number of false positives in CIDSs. For that, alerts are prioritized
according to their impact on the protected system. Thus, such approaches require a
detailed description of the system to be protected (e.g., its network topology and the
deployed operating systems) that is not always available. Moreover, the accuracy of
the alert correlation depends on the level of detail provided in the system description.

3.4. Data Dissemination

Correlated alerts and aggregated data need to be efficiently distributed. The data
to be disseminated can range from alerts to monitored data at all possible kinds of
aggregation granularity. Especially CIDSs that focus on the detection of highly tailored
and targeted attacks require data sharing beyond simple alert dissemination.

Data dissemination is heavily influenced by the CIDS architecture and thus by the
applied membership management. Centralized CIDS have a predefined and directed
flow of information, namely from monitors to the analysis unit. Decentralized CIDSs
arrange their monitors in a hierarchy with a strict bottom-up flow of information. This
hierarchy can be either completely static or changing dynamically (e.g., on the basis of
the monitored data).

In contrast, distributed CIDSs provide a flat monitoring overlay and the highest level
of freedom in exchanging data between monitors. Data dissemination in distributed
CIDS can either result in flooding the entire CIDS overlay or in a selective flooding
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by random walks [Vishnumurthy and Francis 2006] or gossiping approaches [Ganesh
et al. 2003]. A selective, yet more intelligent flooding of a distributed CIDS overlay
is provided by using publish-subscribe methods. Hence, monitors subscribe to other
monitors for specific information (e.g., alert data). Thus, this establishes groups of
monitors that are interested in the same kind of information. Within such groups, data
can be exchanged in both directions and thus are not limited to the direction from
publisher to subscribers. In distributed and DHT-based CIDSs, subscribers can send
information to respective publishers (e.g., via a reverse multicast on top of DHT-based
publish-subscribe).

3.5. Global Monitoring

Isolated IDSs fail in detecting highly distributed attacks because they cannot link
distributed malicious events detected at different IDS instances. Therefore, they might
not detect if malicious events are part of the same attack (e.g., a large-scale network
port-scan). Therefore, from the perspective of an isolated IDS, one malicious port scan
event may not seem to be worth reporting, and the attack and its severity might remain
unnoticed.

For the detection of distributed attacks, a global monitoring mechanism is required
and is built on collaboration and information exchange between monitors. Thus, this
global monitoring is based on the data correlation and aggregation from Section 3.3
and, in the end, represents the detection capabilities of the respective CIDS. Depending
on the specific scope of the CIDS, the global monitoring can vary from being generic
(i.e., the system monitors and detects every possible attack), to specific (focused on
malware spreading attacks, access control violations, etc.).

The remainder of this article contains a detailed survey of existing CIDS systems,
starting with an overview of centralized CIDSs in the subsequent section.

4. CENTRALIZED CIDSs

In a centralized CIDS, monitors send all their information directly to a central analysis
unit that either applies detection algorithms and/or alert correlation algorithms on the
overall data. These systems are widely used because they provide high accuracy rates
at low architectural complexity. However, in most centralized CIDSs, monitors are
usually configured manually. Furthermore, such systems do not scale with the number
of monitors and thus cannot protect large networks. In addition, because all data are
collected and all analysis is done at one central unit, they might not be applicable for
collaboration across different organizations due to privacy issues.

4.1. DIDS

Snapp et al. proposed Distributed Intrusion Detection System (DIDS) [Snapp et al.
1991] as one of the earliest centralized CIDSs in literature. DIDS tries to detect ma-
licious activity over the monitored network and create an overall score of its security
state. The DIDS architecture combines distributed monitoring with a centralized data
analysis. DIDS consists of three basic components: the DIDS director that represents
a central analysis unit, host monitors, and network monitors.

Network monitors observe all packets that are transmitted in their observed network
segment. They apply simple host analysis techniques (e.g., checks of certain services
such as rlogin and telnet) and utilization of heuristics to identify potentially intrusive
behavior. The host monitor is responsible for the monitoring of a particular host. This
unit also conducts a preliminary event analysis to decide which of the alerts should be
forwarded to the director. The existence of a host monitor is not mandatory because
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the network monitor can report network activities of hosts. In addition, at both mon-
itor levels, aggregation is done by removing nonsignificant or OS-specific data before
sending them to the central analysis unit. The main component of DIDS is the director,
a centralized expert system that receives all alerts from host and network monitors.
At this point, data are aggregated via a rule-based expert system, analyzed, and then
the system decides whether there is a security breach on a certain host or a large-scale
attack on the whole system. Finally, some correlation techniques are applied in DIDS.
For instance, DIDS creates a unique ID for each monitor entering the monitoring en-
vironment. Afterward, any malicious activity related to this particular ID is consider
part of the same attack.

DIDS applies only simplistic detection techniques that can probably be easily evaded
by a sophisticated adversary. Hence, the accuracy can be rather poor. Moreover, another
disadvantage of this system is its lack of self-configuration mechanisms. Furthermore,
as the communication and computation overhead at the director increases with an
increasing size of the monitored network, DIDS does not scale. The director component
in DIDS is a SPoF and thus violates the Resilience requirement.

4.2. SURFcert IDS

SURFcert IDS? is a centralized IDS based solely on honeypots. SURFcert’s IDS main
scope is to create a large-scale CIDS that exhibits zero false positives. The system
comprises multiple monitoring points, so-called passive sensors, that forward all their
traffic via pre-established Virtual Private Network (VPN) tunnels to a centralized
analysis unit, the so-called tunnel /honeypot server. At the tunnel server, the traffic is
then analyzed by one or more honeypots, and the results are stored on a separate
logging server.

In terms of accuracy, the exclusive use of honeypots results in a zero false-positive rate
because any interaction with these systems is considered to be an attack. Nevertheless,
honeypots cannot detect all attacks because they presume an interaction of the attacker
with the honeypot. SURFcert IDS uses Nepenthes [Baecher et al. 2006], its successor
Dionaea,? the Kippo* SSH honeypot, and Argos [Portokalidis et al. 2006] as a secure
system emulator. All of these honeypots can only emulate certain ports and protocols.
Hence, they cannot cover all possible attacks. This also illustrates why honeypots
should not be used as the only detection method in an IDSs, but rather as an additional
detection technology. Moreover, both computational and communication overhead of the
tunnel server increase proportionally with the increasing number of sensors. Thus, the
tunnel/honeypot server is not only a SPoF, but it also renders the system unscalable. In
addition, there is an absence of alert correlation and aggregation mechanisms because
all alert data is transferred to the central analysis unit. Finally, SURFcert IDS does
not provide significant global monitoring capabilities because it is only able to present
an overview of the local detected attacks (along with some statistics).

4.3. CRIM

Cooperative Intrusion Detection Framework (CRIM), introduced in Cuppens and Miege
[2002], is a centralized cooperative module that obtains data from monitors or rather
isolated IDSs. CRIM’s scope is to analyze alerts and subsequently attempt to identify
the adversaries’ next possible steps. It provides functions for managing, clustering,
merging, and correlating alerts and thus takes over the task of a central analysis unit

2http://ids.surfnet.nl.
Shttp:/dionaea.carnivore.it.
4http://code.google.com/p/kippo.
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in a CIDS. Monitors send their alerts in the standardized IDMEF data format [Debar
et al. 2007] to the CRIM module.

To process the received data, an alert management function converts data to a set of
tuples, which are then saved in a relational database. Afterward, an alert clustering
function generates clusters of alerts based on a relation of similarity [Cuppens 2001].
The similarity relation between two alerts is created by an expert system and is based
on the classification the alert, time, source, and target. Clusters are inserted into
an alert merging function that creates new global alerts. The global alerts consist of
the alert data collected from each cluster. Subsequently, global alerts feed a correlation
function which conducts further analysis and creates a set of possible actions that might
be performed by the adversary based on the current alert data. Finally, an intention
recognition function is used to provide the administrator with attack information and
the possible next steps of the attacker.

On the one hand, much of the authors’ work is focused on correlation methods,
which seriously reduces overall overhead. On the other hand, the multiple merging
and correlation that is performed by several functions may lead to excessively abstract
alerts and create a limited detection coverage and thus a poor accuracy. Furthermore,
the proposed similarity-based correlation mechanism will not be able to relate so-
phisticated attacks. For instance, a slow distributed attack from different sources to
different parts of the monitored network would remain undetected. Finally, the use of
IDMEF as a standardized language for exchanging alerts is an advantage in terms of
interoperability.

4.4. DIDMA

Distributed Intrusion Detection system using Mobile Agents (DIDMA) [Kannadiga and
Zulkernine 2005] is a CIDS for the detection of distributed attacks on large networks.
DIDMA makes use of static agents that act as local monitors. In addition, mobile
agents exist that are responsible for alert dissemination as well as correlation and
aggregation of data. Moreover, DIDMA contains a centralized entity that maintains
lists of hosts experiencing similar attacks.

A DIDMA network can be seen as a static overlay in which local agents communi-
cate with mobile agents. These local agents act as host monitors and generate alerts
whenever malicious activity is detected, which also includes a classification of the type
of the detected attack. Based on this classification, a global list of IP addresses is kept
of nodes affected by the same type of attack (e.g., a DoS attack). Whenever an alert is
generated by an agent, the IP address of the respective host is added to the list. Upon
the occurrence of malicious activity and to detect a possible intrusion in the network, a
central entity creates a mobile agent that can be transferred to other network positions.
For each identified attack, the mobile agent updates the global list with IP addresses
of other hosts with the same kind of suspicious activity. A mobile agent is then sent
out and subsequently visits all hosts that are listed for the same type of attack. During
this process, the mobile agent aggregates and correlates information from the visited
hosts, updates the global list, and generates alerts when detecting any specific attack.
In the end, alerts are sent to a central user interface for further analysis.

DIDMA utilizes a central entity for creating a global view of the overlay, as well
as for dispatching mobile agents, and this entity represents a SPoF. DIDMA utilizes
a signature-based detection algorithm and therefore cannot detect unknown attacks.
Furthermore, the system requires a valid classification of the alerts for the agents
to operate properly. Because this is not always possible, overall accuracy may be low.
The system’s overhead is highly affected by the number of hosts under attack, which
corresponds to the number of hosts added to the global list. In addition, overhead rises
when a high percentage of the detected attacks cannot be aggregated. In both of these
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worst-case scenarios, DIDMA may produce considerably high communication overhead.
DIDMA’s resilience can be seriously affected in the case of malicious agents. Further-
more, if a host is compromised, an adversary could also compromise mobile agents.

4.5. Summary

Centralized IDSs usually provide high accuracy rates. Their main disadvantages are
the lack of scalability in terms of the number of supported monitors and the SPoF's
that are posed by the central analysis unit. Nevertheless, due to their higher accuracy,
centralized IDSs are widely used in small to medium-sized corporate networks. DIDS
[Snapp et al. 1991] was one of the first centralized approaches, and many systems
followed its basic architecture. In addition, CRIM [Cuppens and Miege 2002] focuses
on the correlation and aggregation of alert data. More recent approaches like SURFcert
IDS provide interesting enhancements (e.g., honeypots) as an additional detection
mechanism, whereas others, like DIDMA, make use of mobile agents.

5. DECENTRALIZED CIDSs

Decentralized CIDSs organize monitoring points or several different self-contained IDS
deployments hierarchically in a tree that is rooted at a central analysis unit. Within
the tree, preprocessing and correlation of monitored data takes place. On the basis of
this correlated data, a distributed analysis for attacks takes place. However, when data
aggregation in a hierarchy takes place, then information is lost at each level of the hier-
archy. As aresult, highly distributed and sophisticated attacks may remain undetected.

5.1. GrIDS

Graph Based Intrusion Detection System (GrIDS) is intended to protect large networks
from actively propagating malware [Staniford-Chen et al. 1996; Cheung et al. 1999],
but it can also detect attacks on individual hosts. The network is split into several
zones, called departments, that are organized in a tree structure. Each department
contains one analysis unit and several network and host monitors that perform
intrusion detection and subsequently send their data to the analysis unit. Hence, each
host in GrIDS belongs to a department, whereas the departments are controlled by
parental departments, thus creating a hierarchy. Moreover, each department contains
two special modules: a software manager and a graph engine. The software manager is
responsible for the management of the local hierarchy status, as well as the monitors
within a department. The overall tree hierarchy is ensured by a centralized hierarchy
server. Finally, GrIDS provides the ability to make dynamic changes in the hierarchy
via the utilization of a user interface.

The graph engine receives input from monitors within a department and thereupon
establishes activity graphs that represent hosts and their network activities between
each other. These activity graphs are first analyzed locally and afterward, they are
aggregated and passed upward to the parental department and its graph engine. At
this point, all information from child departments is merged, and graphs with coarser
resolution are established. Suspicious behavior is detected on the basis of user-given
detection rules that are expressed through a policy language.

The usage of detection rules suggests that, in terms of accuracy, the system would
only detect attacks that are a violation of a security policy. Therefore, sophisticated or
unknown attacks may still remain undetected. In addition, the aggregation mechanism
may not be able to detect a widespread attack that progresses slowly because only
attacks that occur within a short time period can be detected. Due to the division
of the overall network into departments and their hierarchical organization, GrIDS
is scalable in terms of protecting networks of arbitrary size. However, the hierarchy
server that controls and maintains this hierarchy is an SPoF and serves as a potential
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bottleneck. GrIDS is vulnerable to DoS and insider attacks, as are most of the central-
ized and decentralized CIDSs discussed in this survey. Finally, the system exhibits a
built-in privacy protection mechanism due to the way it handles its hierarchy. In more
detail, each department is only able to observe activity that is restricted within its
boundaries.

5.2. AAFID

Autonomous Agents For Intrusion Detection (AAFID) is a hierarchical CIDS proposed
in Balasubramaniyan et al. [1998] and Spafford and Zamboni [2000]. AAFID does
not focus on the detection of specific types of attacks but rather acts as a framework
in which different detection engines may be utilized. The system consists of agents,
transceivers, and monitors. With respect to our terminology, agents act as monitors,
while transceivers and monitors act as analysis units.

Agents are stationary and in the AAFID architecture, it is not foreseen that they
migrate between different hosts. Each host can contain multiple agents that perform
event monitoring and afterward send their reports to a transceiver. For instance, an
agent could monitor for large numbers of port scans targeting a protected host. As soon
as it detects this kind of activity, it will generate a report and send it to a transceiver.
The authors claim that a variety of detection engines can be used in the agents (e.g.,
the IDIOT IDS [Crosbie et al. 1996]). Transceivers are entities that supervise all
local agents, analyze their reports, aggregate the findings, and report them to one or
more monitors. Moreover, transceivers have full control over the agents and can start,
stop, and (re)configure them. Monitors can audit more than one transceiver. Because
monitors receive alerts from all over the network, they can perform a data correlation
over multiple hosts. However, the authors [Balasubramaniyan et al. 1998; Spafford
and Zamboni 2000] do not give further details on that. Monitors can also be organized
hierarchically, so that lower level monitors report to higher level monitors. Finally, a
central monitor on top of the hierarchy communicates with a user interface.

AAFID utilizes a static hierarchical tree structure with a designated monitor taking
over the root position and thus representing an SPoF. Hence, the system is not resilient
against attacks or failures of these entities. Moreover, despite the fact that the authors
regard low overhead and resilience against failures as important requirements,
they do not address them in the implementation of their prototype. Finally, data
dissemination as well as data correlation and aggregation are not addressed by them.

5.3. EMERALD

Event Monitoring Enabling Responses to Anomalous Disturbances (EMERALD)
is another hierarchical CIDS [Porras and Neumann 1997]. It is designed for the
monitoring of large enterprise networks and focuses on the detection of unauthorized
access in domain resources. The system distinguishes three different layers: service
analysis, domain-wide analysis, and enterprise-wide analysis. The service layer covers
the detection of attacks across services and components within a single domain.
The domain-wide analysis layer monitors multiple services and components. The
enterprise-wide layer on top of the other layers, attempts to detect malicious activity
across multiple domains.

Each of the aforementioned layers contains EMERALD monitors that use both
signature-based and anomaly-based detection engines. Data dissemination in EMER-
ALD is achieved via a subscription-based communication scheme. In more detail, each
monitor may subscribe to others through a client/server-based asynchronous model
and receive the respective alert data automatically. In addition, authors suggest that,
to ensure the security of the messages exchanged between monitors, a public key
authentication may be used. Finally, there is subsequent work on alert correlation
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techniques [Valdes and Skinner 2001; Porras et al. 2002], as seen in Section 3, that
have been tested in an EMERALD environment.

The hybrid detection engine used in EMERALD ensures a high accuracy for both
known and unknown attacks. The system does not provide any mechanism for the
detection of insider attacks. Regarding interoperabilityy EMERALD provides an
API that can be used to interconnect different monitoring tools. Nevertheless, this
requires additional effort by the user of the system. In addition, no standardized
data format for information exchange with other IDS is used. Finally, according to
the authors, ensuring reliable data delivery may increase the overall overhead of the
subscription-based data dissemination mechanism.

5.4. HIDE

Hierarchical Intrusion DEtection (HIDE) is another approach described in Zhang et al.
[2001], one that mainly focuses on applying novel anomaly detection techniques. HIDE
arranges its monitors in a static hierarchical tier structure and employs anomaly
detection via statistical preprocessing and neural network classification. Each tier in
HIDE contains multiple monitors that are the so-called Intrusion Detection Agents
(IDAs). Each performs monitoring either on the host or network level.

An IDA collects network traffic or host events and abstracts them to statistical
variables and reports. These reports are then statistically checked and compared
against the reference model maintained in the IDA. Afterward, the result is taken and
fed into neural network classifiers for further analysis and to determine if the traffic
is normal or not. Finally, reports for higher tiers are generated, and information is
displayed via a local user interface.

Because HIDE uses anomaly detection techniques, higher false-positive rates can
be anticipated. In addition, the experimental results from Zhang et al. [2001] indicate
that low-volume attacks are hard to detect. Moreover, the authors mainly concentrate
on describing the detection algorithm and on the selection of the best neural network.
For this reason, many details are missing to properly assess HIDE according to the
requirements from Section 2.1.

5.5. Summary

Decentralized CIDSs are intended for the protection of large networks by overcoming
the scalability problems of centralized CIDSs. However, most of the observed decentral-
ized CIDSs accomplish this goal only partially because they usually contain one or more
SPoF's. Moreover, decentralized CIDSs aggregate and correlate the data from lower lev-
els and pass them over to the next level. At each level, the amount of data is reduced at
the cost of lost information, which can result in lower accuracy compared to a central-
ized approach. Most of the proposals in this category focus either on novel architectures
(GrIDS, AAFID) or detection algorithms (HIDE). In these terms, EMERALD, although
an early approach, is the most complete solution with respect to our requirements.

6. DISTRIBUTED CIDSs

A distributed CIDSs architecture contains no central component or hierarchy because
the tasks of the central analysis unit are distributed to all monitoring points. As a
result, such a system, which follows the P2P design principle, can scale with any
number of monitors and thus can protect large networks. Moreover, the lack of a
strict hierarchy as in decentralized CIDSs provides more freedom in interconnecting
monitors with each other and thus can be a benefit when encountering sophisticated
and highly distributed attacks. However, depending on the specific distributed CIDS,
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this can also be a drawback: Because there is no hierarchy, there is no component in
the CIDS that has a global view of the protected network.

6.1. Structured CIDSs

Structured CIDSs impose a structure on the participating monitors by organizing them
using a DHT. A DHT provides guaranteed broadcast and search functionality when
storing data in a distributed manner. Most structured CIDSs described here make
use of DHTs for the efficient storage of attack-related information (e.g., maintaining
distributed blacklists). Others (e.g., INDRA) use a DHT for organizing their monitoring
points.

However, this requires structure in terms of a fixed overlay neighborhood that is
based upon the IDs of the CIDS monitors. Hence, this does not allow for flexible
overlay connections. Moreover, since DHTs require that the data to be stored are
mapped to the ID space of the DHT, any multidimensional data have to be reduced
to single-dimension data. Therefore, when storing IDS data in a DHT, it is necessary
to select a single property as a key for the DHT. Hence, only single-attribute lookups
and no complex multi-attribute searches are feasible. Moreover, as a consequence
of the strict ordering of nodes and data in the ID space, most DHT algorithms and
implementations cannot provide strict locality properties. Due to this, privacy issues
may arise when storing the monitored data.

6.1.1. INDRA. Intrusion Detection and Rapid Action (INDRA) is a P2P-based CIDS
approach proposed by Janakiraman et al. [2003]. The system does not focus on
any partlcular type of attacks, but rather on generic malicious activity detection. It
organizes its monitors, so- called daemons, in a Pastry-DHT [Rowstron and Druschel
2001] and uses Scribe [Castro, Miguel, Druschel Peter, Kermarrec, A.-M., Rowstron
2002] as publish-subscribe mechanisms for managing data sharing between daemons.

Monitors in INDRA act as both monitors and analysis units. When an attack is
detected by an INDRA daemon, a proactive or reactive defense action takes place. An
INDRA daemon consists of the different following subcomponents:

—Watchers detect suspicious activities on a host or network level.

—Access controllers are responsible for taking action against particular users (e.g.,
denying access to an account that is marked as compromised).

—Listeners aggregate the alerts generated by watchers and convey them to the access
controllers.

—Reporters communicate with other hosts by means of sending and receiving alerts to
and from other hosts, respectively.

The authors do not describe the detection mechanism used by Watchers. The informa-
tion dissemination in INDRA is handled by Scribe. For every attack category, a Scribe
group is created, and nodes can subscribe to these groups. For instance, nodes may
subscribe to the Scribe groups for SSH and DoS attacks. In addition, the authors claim
that alternative models, such as rumor-spreading, can be used for data dissemination,
but without providing concrete suggestions on how to deploy them.

INDRA tries to improve its accuracy by allowing administrators to create plugins for
new attacks. However, this manual intervention by the administrator needs significant
effort because these plugins have to be written manually (as code). Furthermore, a
compromised monitor can reduce the accuracy of INDRA by producing fake alerts as
a form of a DoS attack. For example, consider the case when a compromised peer
claims that another peer within the trusted network is compromised. One of the main
suggested defensive mechanisms is the creation of a blacklist. Hence, all peers in the
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network will insert a suspicious peer into their list, thus blocking it from any further
communications.

6.1.2. LarSID. Zhou et al. describe Large Scale Intrusion Detection (LarSID), a P2P-
based CIDS based on a publish-subscribe mechanism [Zhou et al. 2007, 2005]. Every
peer in the system is a monitor (via the usage of local IDSs) and also an analysis unit
that creates a list with suspicious IP addresses and distributes it to the P2P network.

In order to be able to share alert information between different peers, the system
employs a publish/subscribe mechanism on top of a DHT; that is, a modified Pastry
[Rowstron and Druschel 2001] DHT named Bamboo [Rhea et al. 2004, 2005]. The alert
data in LarSID are in the form of lists of attackers’ IP addresses. Each peer in the
monitoring network is responsible for maintaining a watchlist for its local subnetwork,
correlating subscription messages, and also generating notification messages regarding
the identified malicious IP addresses. The system also utilizes a threshold policy. In
more detail, if a certain number of monitors have flagged an IP address as malicious,
then notifications are sent over the network. Otherwise (i.e., the number of detections
of an IP is below the threshold), a new entry is created in the monitor’s watchlist.

As a distributed CIDS, the system scales to large networks. This is also supported
by the experimental results in Zhou et al. [2005]. However, as reported in Zhou and
Leckie [2008], certain nodes can become overloaded when a large number of attacks is
originated from the same IP address. LarSID assumes that all involved peers in the
monitoring network are to be trusted. For this, it utilizes a Public Key Infrastructure
(PKI) to ensure that participating nodes are authenticated. Moreover, communication
between all monitors takes place over SSL. The main disadvantage of such an approach
is its global monitoring capabilities. LarSID can only detect attacks that involve a
common source or destination IP address.

Similar approaches. Many CIDS approaches have been proposed that are similar
to the LarSID, such as Komondor [Czirkos and Hosszu 2012], Wormshield [Cai, Min,
Kai Hwang, Yu-Kwong Kwok, Shanshan Song 2005], the P2P-based CIDS of Marchetti
et al. [2009], and Cyber Disease DHT (CDDHT) [Li et al. 2006]. All of these proposals
are similar in terms of their structured CIDS architecture, although the underlying
DHT implementation may differ. Moreover, they exhibit differences with respect to
their specific purpose as well as in their key selection for the DHT. In more detail,
their global detection varies from worm detection and containment (Wormshield) and
DoS attacks, port scans, worms, and botnets (CDDHT) to more flexible ones (Komondor
[Marchetti et al. 2009]). Finally, RepCIDN [Gil Pérez et al. 2013] is another DHT-based
CIDS that mainly focuses on the construction of a reputation mechanism (cf. Section
2.2.2) to handle internal attacks.

6.2. Unstructured CIDSs

Unstructured CIDSs provide great flexibility because no restrictions are imposed in
selecting their overlay neighbors (peers to exchange data). Hence, this feature can be
exploited in establishing flexible overlay relationships based on properties that are
different from node IDs (e.g., based on similarities in the monitored data). However,
because there is no structured ID space, as in structured CIDSs, data cannot be stored
and retrieved efficiently as in structured CIDSs. For this reason, unstructured CIDS
are not feasible for the distributed storing of attack-related information (e.g., blacklists)
and efficiently looking them up again.

6.2.1. DOMINO. The Distributed Overlay for Monitoring Internet Outbreaks
(DOMINO) is described in Yegneswaran et al. [2004]. It utilizes a hybrid architec-
ture with three kinds of entities: axis overlay, satellite communities, and terrestrial
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contributors. Axis nodes act as both monitors and analysis units. Satellite communi-
ties and terrestrial contributors act as additional monitoring points that send their
alert results to axis nodes for further analysis.

Axis nodes are the central component of the system and are connected via an unspec-
ified overlay network. The axis nodes are assumed to be especially trustworthy and use
a PKI for mutual authentication. Moreover, to counter insider attacks and fake alerts,
each of them can enforce a threshold filtering upon received data. Satellite commu-
nities are smaller networks of satellite nodes that locally implement a version of the
DOMINO protocol. They are organized in a hierarchy that is always led by an axis node.
Finally, terrestrial contributors expand the system by adding non-trustworthy peers
who supply summaries of their detected attacks without implementing the DOMINO
protocol.

DOMINO utilizes signature-based IDSs, firewall rules (for intrusion response), and
also honeypots for intrusion detection. Active sinks are nodes that monitor a large
number of unused IP addresses; they have a low false-positive rate that makes it
possible to produce signatures for unknown attacks. Finally, the alert messages are
represented in XML format and are exchanged periodically.

The hierarchical structure and the combined usage of both network-based IDSs and
honeypots increase the overall accuracy of DOMINO. In addition, the alert messages
are structured via XML, which ensures interoperability between different systems. Sig-
nificant communication overhead may arise if the alert’s broadcasting period is short-
ened, compared to the one implemented (i.e., hourly alert broadcasting). Resilience
against certain insider attacks is achieved by a static axis node architecture. However,
this inflexibility in the axis overlay renders the system vulnerable to attacks on axis
nodes. Moreover, multiple compromised and cooperating axis nodes can pose a threat to
the overall system, especially because DOMINO contains no explicit countermeasure
against insiders (e.g., a reputation system). Nevertheless, internal DoS attacks (e.g.,
by sending large amounts of alerts from a compromised axis node) can be mitigated by
a threshold filtering at each axis node.

6.2.2. Neighborhood-Watching. A P2P-based CIDS that uses mobile agents in a
neighborhood-watch approach has been described [Ramachandran and Hart 2004].
Nodes are arranged in an unstructured P2P network in which different kinds of agents
are exchanged among peers to check for possible attacks.

Peers watch out for their neighboring peers and store critical information on each
of them (e.g., checksums of critical data and operating system files, as well as system
binaries). If an anomaly is detected by a neighbor of an attacked peer, a voting process
among all its neighbors takes place. When the majority agrees that intrusive behavior
has been observed, all neighbors will try to protect themselves and at the same time
notify and warn other peers in the network. To gather knowledge about neighbors in the
P2P network, each peer sends different kinds of agents to its neighbors. These agents
can perform a variety of tasks at the visited systems, such as establishing checksums
of data files or looking for signatures of known viruses or worms. Moreover, agents are
also used when voting about intrusive behavior in an overlay neighborhood.

In addition to a discussion of the system, the authors give no further evaluation of
their system, nor any details on the methods used for the overlay establishment. At the
same time, communication overhead issues may arise when a large number of agents
is sent over the network to perform checks. The overall accuracy of the system could
be low because information and data sharing is only done within a neighborhood level.
Moreover, the authors do not provide enough insights for the detection mechanisms
utilized. However, the voting process could have a positive effect in reducing the false-
positive ratio. Furthermore, the voting process can also provide resilience against
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insider attacks. Finally, sending agents to other systems to check crucial files may
conflict with the privacy requirement.

6.2.3. NetBiotic. NetBiotic [Vlachos et al. 2004] is a distributed CIDS that is based
on the JXTA P2P framework [Gong 2001]. The focus of NetBiotic is not on detecting
specific attacks, but rather on the fast creation of a network of interested peers for alert
information exchange. Hence, the goal is to provide basic protection to participating
peers (e.g., by detecting rapidly propagating malware). With respect to our terminology,
each NetBiotic peer is both a monitor as well as an analysis unit and hosts a notifier
and a handler component.

At each peer, the notifier reads from log files written by security-related applications
(e.g., by a local IDS). On that basis, the notifier detects attacks, creates statistics of
attacks, and finally transmits these statistics to other peers. In particular, the noti-
fier calculates and transmits the percentage by which the average number of detected
attacks differs from the average hits detected in earlier time intervals. If this percent-
age is significantly higher than a preconfigured threshold, the peer is considered to be
under attack.

The handler is responsible for receiving messages from other peers and, if need be,
taking action, such as modifying the security settings of the end-user applications or
introducing new firewall rules. A significant difference from most other IDS proposals
is that NetBiotic takes defensive actions only when the number of attacks detected
is higher than the average—when an epidemic outbreak occurs. Moreover, one of the
main features of NetBiotic its ability to flexibly adapt the security policy, for example,
when the rate of past attacks is higher than the current ones.

High accuracy rates are not the main focus of NetBiotic. As mentioned earlier, many
attacks might remain undetected if there is no significant difference on the overall
detection percentage. Interoperability is partially achieved because the system’s archi-
tecture is supposed to be compatible with any IDSs that is able to record its alerts in
a log file. However, certain dependencies exist, such as the need for the incorporation
of a parser to extract data from the log files. In addition, the countermeasures can be
OS-specific. Finally, the decrease of the security level when there is a low attack detec-
tion rate appears interesting. However, this feature may be exploited by an insider to
lower the overall security of a network and to attack it subsequently.

6.2.4. Trust-Aware CIDS. Duma et al. propose a trust-aware P2P-based overlay [Duma
et al. 2006] for CIDS based upon the JXTA framework [Gong 2001]. This CIDS specif-
ically addresses insider threats through the utilization of a trust-aware correlation
engine and a dynamically adjustable trust management scheme. With respect to our
terminology, each peer in this system is both a monitor and an analysis unit.

The key component in each peer is the event manager that informs other peers of
intrusion attempts and receives alerts from other peers. In addition, this unit provides
filtering capabilities based on existing rules. The alert dissemination is done through
selective flooding to known peers. All exchanged alert messages are in IDMEF format.
To create trust among monitors, a list is maintained for acquaintance peers. Hence,
every communication between monitors (e.g., the exchange of alerts) is evaluated, and
a score is generated for each peer. The higher the trust level of a peer, the bigger is its
impact on others. The acquaintance list is dynamically updated and includes only the
best available candidates that, in addition, had to pass a probation period. However,
the trust mechanism requires that each peer is able to determine whether an intrusion
event was genuine or a false positive. This cannot be always ensured, and it highly
depends on the accuracy of the employed local IDS. For the prototype implementation
in Duma et al. [2006], Snort was used. Because this is a signature-based IDS, the
probability that a detected intrusion is actually an attack is high.
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The system is resilient to most of the insider threats, which includes Sybil and
newcomer attacks. Nevertheless, some attacks are still feasible, such as sleeper attacks
in which a highly trusted and long-term participating peer suddenly turns malicious.
Such a peer would threaten the system as long as it remains in the acquaintance lists
of other peers and can send fake alerts to others. The prototype system given in Duma
et al. [2006] makes use of the Snort IDS that cannot detect unknown attacks and that
can be easily evaded as described in Section 2.2. However, the system is interoperable
because Snort comes with IDMEF support for exchanging alerts.

6.2.5. Worminator. In Locasto et al. [2004] and Locasto et al. [2005], the P2P-based
IDS Worminator is introduced whose peers act as monitors, and each of them hosts
a network-based IDS. Worminator exchanges compressed information via Bloom fil-
ters [Broder and Mitzenmacher 2004] with peers that are selected by a distributed
correlation scheduling algorithm called Whirlpool.

Bloom filters are an efficient one-way data structure and are used to ensure privacy
and compactness of the produced alerts. Upon a local alert, the corresponding infor-
mation (e.g., source IP address and source port) is inserted into a Bloom filter. Hence,
the Bloom filter represents a compressed list of suspicious hosts, a so-called watchlist.
The watchlist is shared via the Whirlpool algorithm that creates dynamic neighborhood
relationships in the overlay. Only neighbors exchange alert data via Bloom filters. How-
ever, the authors do not provide in-depth details on how this distributed scheduling
algorithm works.

Bloom filters are probabilistic data structures. False-positive matches are possible
especially with an increasing filling degree. However, there can be no false negatives:
An element either has been included in the Bloom filter or not. Hence, when the
number of included elements increases, innocent hosts that have not been explicitly
included in the Bloom filter also could be identified as malicious. As a result, this
affects the accuracy of Worminator beyond the actual detection mechanism. Never-
theless, the exchange of Bloom filters significantly decreases the signaling overhead
compared to exchanging the uncompressed input data. Overhead is also reduced via
dynamic neighborhood formation in Whirlpool, at least in comparison to a full mesh
distribution scheme or a random selection distribution scheme. As in many CIDSs,
insider attacks are not covered by Worminator; therefore, malicious monitors can gen-
erate fake alerts and accuse other monitors of being malicious. Privacy of sensitive
data from the distributed alerts can be partially achieved by the utilization of Bloom
filters since data is compressed and hashed. In addition, the system uses a fixed list
of participants for the alert correlation, so that only legitimate users are granted with
Bloom filter access. However, an insider could gain access to the Bloom filter and be
able to launch subsequent attacks. Such an attack could be to delete entries from it or
to insert IP addresses of innocent hosts to accuse them of malicious behavior. Never-
theless, this can be avoided by protecting the Bloom filters via cryptographic means.
Finally, an internal attacker could also query specific IPs to check if they had been
detected by the Bloom filter.

6.2.6. Quicksand. Quicksand is a CIDS that applies a distributed pattern detection
mechanism for connecting distributed events manifested on a number of hosts [Kriigel
et al. 2002]. In a global monitoring level, Quicksand utilizes hybrid detection algo-
rithms locally and afterward builds up signatures, so-called attack scenarios, that are
used for connecting attacks that are distributed over the monitored network. To achieve
this, each peer in Quicksand is a monitor that contains local IDSs with some prefilter-
ing capabilities and an analysis unit, the so-called event correlation unit. Correlation
units are also responsible for intrusion response (e.g., reconfiguring firewalls upon the
local detection of an attack). Because Quicksand focuses more on distributed pattern
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detection, it does not presume a specific detection engine. Monitors can locally apply
signature-based as well as anomaly-based detection [Krugel et al. 2002] techniques.

The system makes use of a centralized unit that stores new attack signatures and
updates the signature databases of monitors. To represent signatures of distributed
attacks, the authors introduce the Attack Specification Language (ASL) for describing
subsequent intrusion steps as blocks of patterns. This allows Quicksand to express
complex relationships between distributed events on different hosts. Whenever an
event on one host induces communication that leads to another event on another host,
both events can be ordered and are set into relation in ASL. Afterward, each attack
scenario described in ASL is transformed to a directed and acyclic pattern graph.
Nodes in the graph correspond to the distributed events that take place at different
hosts. Connections and relationships are represented as edges, whereby one node
constitutes a particular event, and its successor node is the immediate successor of that
event in the ASL. Once established, the centralized unit disseminates these pattern
graphs to the monitors. Finally, at each monitor, the respective event correlation unit
can check for possible intrusions. For that, it receives prefiltered streams of events
from the local IDSs and executes a distributed misuse detection algorithm that detects
the occurrence of attack patterns on the basis of the pattern graph. In their prototype,
the authors combine a Snort-like signature-based detection with an anomaly-based
detection mechanism from Krugel et al. [2002]. To ensure compatibility, the system
applies IDMEF [Debar et al. 2007] for exchanging information between detection and
correlation units, as well as between different monitors.

In terms of accuracy, while hybrid detection can be used locally by Quicksand, this
is not the case for its global distributed pattern detection scheme. In this case, sig-
natures (attack scenarios) have to be created, so false negatives (i.e., related attacks
that failed to successfully be connected) exist. Moreover, the system allows only tree-
shaped patterns to be created globally. However, this decision might not be always
realistic because it excludes other kinds of patterns that might be more suitable. The
system remains scalable because detection and correlation are performed locally first.
Subsequently, only necessary information is exchanged between monitors, without the
need for involving a central party in the detection process. Finally, Quicksand uses
IDMEF for better interoperability, and the authors explicitly provide mechanisms for
the integration of third-party detection engines and IDSs.

6.3. Summary

Distributed CIDSs were created to overcome the scalability limitations of centralized
CIDSs, as well as the limitations of hierarchical approaches. In such an architecture,
no entity has a global view of the network. Thus, the challenge is to provide accuracy
rates close to that of a centralized CIDS while protecting larger networks in which
centralized intrusion detection is no longer feasible.

On the one hand, structured distributed approaches provide efficient storing and
lookup functionality. At this level, proposals such as LarSID offer a scalable CIDS
solution with a fair, yet one-dimensional, global detection block. On the other hand,
unstructured systems have the ability to couple nodes on the fly but with a less
efficient way to store and retrieve alert data. In this direction, approaches such
as DOMINO and the Trust-aware CIDS provide some promising and interesting
properties [Yegneswaran et al. 2004; Duma et al. 2006].

7. COMPARISON OF CIDS APPROACHES

In this section, we give an overall comparison of the surveyed solutions of CIDSs
by focusing on the individual proposed requirements given in Section 2.1. Table II
provides an overview of all CIDS surveyed in this article according to their employed
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Table 1. CIDSs and Their Building Blocks
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Note: X indicate that the respective building block is not available; a question mark (?) indicates
unknown cases.

building blocks (cf. Section 3). Table III provides a summary of our findings by listing
all discussed CIDSs and comparing them to the requirements from Section 2.

Accuracy. The foremost task of a CIDS is the detection of attacks; therefore, maximiz-
ing the accuracy of this detection is the most important requirement for CIDSs. With
respect to the proposed building blocks of a CIDS, accuracy is mainly influenced by
the employed local detection mechanisms (local monitoring) and the detection mech-
anisms that operate on shared data (global monitoring). Moreover, essential for the
global monitoring are the employed data correlation and aggregation mechanisms.
These mechanisms preprocess and merge subsets of the data obtained from different
monitors as a basis for the detection mechanisms operating on them. It is expected that
the class of centralized CIDS provides a higher detection accuracy than a decentralized
or distributed CIDS. Centralized CIDSs and their employed detection mechanisms can
operate on the full dataset, whereas decentralized CIDSs operate on aggregated data,
and distributed CIDSs employ detection mechanisms that operate on subsets of the
monitored data.

However, the level of achieved accuracy is determined by the specific detection mech-
anism employed by the respective CIDS. To make it worse, most of the surveyed CIDSs
lack an evaluation of their accuracy in detecting attacks. A comparison of the surveyed
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Table Ill. Collaborative Intrusion Detection Systems and Requirements
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CIDSs would require quantitatively evaluating all surveyed CIDSs in a comparable
setting, which is simply not feasible. For this reason, it is difficult to state which ap-
proaches meet the accuracy requirements.

Because centralized CIDSs operate on the full dataset, we presume them to meet the
accuracy requirements. Decentralized and distributed CIDSs are considered to have a
lower accuracy and thus meet the requirements only partially. However, several of the
discussed systems focus more on the architectural level than on the actual mechanisms
for detecting attacks. For this reason, we consider these systems (e.g., NetBiotic and
AAFID) to have a rather low accuracy and are thus assumed not to meet the accuracy
requirements. Among the decentralized approaches, we only assume EMERALD to
have sufficiently high accuracy because it utilizes a hybrid detection mechanism.

Among distributed CIDSs, we presume INDRA and NetBiotic to have low accuracy
in detecting attacks. INDRA makes use of simplistic detection methods, and, regarding
NetBiotic, accuracy is not in the main scope of the system, but rather the creation
of a network of peers for fast information exchange. The only distributed CIDS that
we assume to provide good accuracy is DOMINO. This approach exhibits hybrid local
monitoring via a combination of honeypots, dynamic firewall rules, and network-based
IDSs. However, in DOMINO, this comes at the expense of a significant computational
and communication overhead.

Overhead. The communication overhead created by a CIDS is a direct result of the
employed data sharing and dissemination mechanisms. Among the discussed CIDSs, a
multitude of techniques is used for this purpose: reverse multicast, publish-subscribe
methods, and flooding mechanisms. However, all of these techniques have advantages

ACM Computing Surveys, Vol. 47, No. 4, Article 55, Publication date: May 2015.



55:26 E. Vasilomanolakis et al.

and come with inherent drawbacks. For instance, while publish-subscribe algorithms
seem to be promising for a deployment in CIDSs, it is not trivial to select the subscrip-
tion criteria on which basis monitors subscribe to data. Flooding mechanisms come
at high signaling overhead but cause monitored data to be available throughout a
CIDS overlay and thus can result in increased accuracy. There is a tradeoff between
the tolerated or caused signaling overhead and other requirements, such as resulting
accuracy.

As can be seen in Table III, we assume that most of the discussed CIDSs cannot meet
the requirement of minimal overhead. However, to compare them with each other and
to assess their overhead, an extensive quantitative evaluation of all discussed systems
would be required. Because this is not possible, we can only base our assessment on the
architecture of the observed systems, their design choices, and their limitations. For
instance, the CIDS Worminator tries to minimize communication overhead by using
Bloom filters and by exchanging them between monitors via a certain scheduling algo-
rithm. However, the data reduction by Bloom filters comes at the expense of decreased
accuracy.

Scalability. Scalability is a fundamental requirement because CIDSs are intended
to protect large networks. From the CIDS building blocks, the membership manage-
ment is assumed to have the biggest influence on the scalability of CIDSs. Centralized
approaches, as the name implies, utilize a centralized membership management and
thus cannot scale to large networks. The central analysis unit represents a SPoF and a
bottleneck. There are also several decentralized CIDSs that employ centralized mem-
bership management (e.g., GrIDS) and thus do not scale as well. Scalable, decentralized
systems with interesting architectures are the AAFID, which creates a hierarchical tree
structure, and EMERALD, which divides its monitored space in a multilayer fashion.
The class of distributed systems is assumed by definition to be scalable. All distributed
CIDSs summarized in this article seem to be free of a SPoF and bottlenecks. However,
it is again difficult to assess the scalability of the discussed CIDSs individually because
most have not been described in sufficient depth.

Resilience. A CIDS has to be resilient to failures and attacks, which also includes in-
sider attacks from compromised and malicious system components. Hence, when under
attack, resilient CIDSs need to stay available or at least provide graceful degradation.
By their nature, centralized CIDSs cannot be assumed to be resilient. An attack on
their central component will bring down the system immediately. Decentralized CIDSs
are more resilient against failure and attacks. However, a failure of the central anal-
ysis unit on top of their hierarchy can result in service unavailability. Although there
are mechanisms for automatic restoration of tree structures in case of failures, none
of the surveyed systems makes use of them. Furthermore, in many cases (e.g., HIDE),
the overall architecture appears to be static. Most of the observed distributed CIDSs
utilize well-studied P2P protocols for membership management (e.g., DHTS). These
approaches are well studied and provide mechanisms for graceful degradation and
fast restoration after failures. Hence, we assume them to be resilient to failures and
external attacks.

However, most of the CIDSs discussed in this article are vulnerable to insider at-
tacks. Only the Trust-aware CIDS [Duma et al. 2006] and the Neighborhood-Watching
approach from Ramachandran and Hart [2004] provide countermeasures against ma-
licious insiders. Thus, in addition to these, we assume no other of the surveyed systems
to be fully resilient and thus we rate them only as partially resilient.

Self-configuration. Self-configuration is a prerequisite for a resilient system because
it allows for automatic system restoration, such as after a failure or an attack has taken
place. In addition, self-configuration avoids the manual and error-prone configuration
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of CIDSs. Distributed approaches inherently provide self-configuration mechanisms,
such as via well-researched P2P mechanisms. DIDMA is the only centralized CIDS
that offers partial self-configuration methods (e.g., agents are able to operate and
self-configure themselves in the case of a failure of their dispatcher). For all other
centralized CIDSs and decentralized CIDSs discussed in this article, it is not clear to
what extent they support self-configuration.

Privacy. Privacy in terms of not disclosing data to unauthorized sources is also
an important prerequisite when deploying a CIDS in larger scale and across differ-
ent domains. However, only a few of the discussed systems include privacy-protecting
mechanisms. For instance, Worminator partially achieves this requirement by combin-
ing the use of Bloom filters along with a trusted list of participant peers. In addition,
GrIDS exhibits a built-in privacy-protection mechanism due to the way it handles
its hierarchical architecture. In more detail, each department is able to only observe
activity restricted within its boundaries.

Interoperability. Finally, a CIDS should also be interoperable with other CIDS de-
ployments. For that, several of the observed systems (e.g., the Trust-aware CIDS [Duma
et al. 2006] or CRIM [Cuppens and Miege 2002]) make use of standardized formats for
data exchange, such as IDMEF.

Summary. To sum up, centralized CIDSs have the potential to offer the highest ac-
curacy, but do not scale. Hence, they can only be used to protect small infrastructures,
such as small corporate networks. For larger networks, such as a smart grid or large
corporate infrastructures, more scalable solutions are required. Decentralized CIDSs
seem to be suitable at first sight, but they are vulnerable to attacks and provide a
lower accuracy than centralized systems. In terms of overhead, decentralized CIDSs’
performance is highly dependable in regards to the utilized building blocks for correla-
tion and aggregation. Most of the distributed IDSs are scalable to large networks and
are resilient to attacks, but this comes at the expense of more overhead and accuracy
degradation compared to centralized systems. Hence, especially in this category, a lot
of challenges remain to be addressed by future research.

However, especially in the class of distributed CIDSs, many interesting systems
have been proposed so far. For instance, DOMINO utilizes a hybrid architecture by
combining a P2P-based core of especially trustworthy nodes with less trustworthy
monitors that are organized in hierarchies. Nevertheless, as mentioned in the detailed
analysis of DOMINO in Section 6.2, this might create inconsistencies with regard
to our requirements, especially with respect to resilience against insider attacks. In
addition, approaches from the structured CIDSs class, such as LarSID, demonstrate
the efficiency and scalability of P2P CIDSs when the detection of certain attacks is
required (e.g., DDoS).

The main finding of this article is that none of the observed systems can satisfy all
requirements for CIDSs. While most distributed CIDSs are scalable and resilient, we
assume that distributed approaches provide a lower detection accuracy than central-
ized or decentralized CIDS and induce too much overhead for a practical deployment.
However, we also admit that our analysis of the surveyed CIDSs has been difficult be-
cause almost none has been evaluated in large-scale or real-world environments. This
clearly shows the need for more research in collaborative intrusion detection, especially
in the area of distributed CIDSs.

8. CONCLUSION

In this article, we summarized the state of the art in collaborative intrusion detection.
Here, we give a detailed summary of our article and briefly discuss the remaining
research gaps that we identified in the area of collaborative intrusion detection.
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8.1. Summary

This article gives an overview on the current state of the art in the area of distributed
and collaborative intrusion detection. For that, we derive requirements for CIDSs
when deployed in large-scale environments and discuss attacks that try to evade them.
Moreover, we disassemble CIDS into five basic building blocks and discuss each of these
blocks extensively. The result of this discussion is a taxonomy for CIDSs along which
we summarize and discuss popular CIDSs from the state of the art with respect to the
derived requirements and the identified attacks. We mainly classify CIDSs by their
resulting communication architecture (i.e., the utilized membership management),
which can be either centralized, decentralized, or distributed. For each class, we provide
a further refined taxonomy and discuss representative approaches in detail.

Along with this classification, we provide a detailed qualitative discussion of CIDSs,
which reveals that none of the surveyed systems fulfills all of our requirements for
CIDS. Many CIDSs, especially the decentralized and distributed ones, have either
been developed with a specific attack scenario in mind or provide little more than an
exchange of alerts and simplistic alert correlation techniques on top of it.

Each class of CIDSs has its advantages and disadvantages. Centralized IDSs are a
solid solution for the protection of small networks. Because they carry out intrusion
detection on the complete dataset, they provide better detection accuracy than de-
centralized and distributed approaches. However, their signaling overhead increases
proportionally with network size and the number of monitors and thus limits their
scalability.

An interesting centralized CIDS is SURFcert IDS, which utilizes honeypots for in-
trusion detection. However, because honeypots can only detect attacks that directly
interact with them, they should never be the only detection mechanism.

Contrary to centralized CIDSs, decentralized and distributed CIDSs are scalable
to large networks because they can support an arbitrarily large number of monitors.
Nonetheless, because they carry out intrusion detection on subsets of the data only, a
lower accuracy than centralized CIDSs can be expected. In these architectures, there
is no central analysis unit, as there is in centralized CIDSs, that has the complete
view on the alert data. While decentralized systems lose information in each corre-
lation/aggregation step toward the central analysis unit on top of the hierarchy, dis-
tributed systems completely lack any component that has a global view of the network.
Hence, their detection accuracy is heavily influenced by their data dissemination, data
aggregation, and data correlation methods. As a result, we consider most current de-
centralized and distributed CIDSs as not suitable for the detection of sophisticated
and highly distributed attacks. Furthermore, all surveyed decentralized CIDSs still
contain SPoFs and bottlenecks that render them vulnerable to attacks. Distributed
CIDSs do not have this drawback but induce higher signaling overhead than the other
two classes.

Interesting decentralized proposals include GrIDS and EMERALD. GrIDS intro-
duces anovel architecture and detection mechanism based on the construction of attack
graphs. EMERALD, one of the earliest proposals, provides a hybrid detection engine
combined with a strict separation of the monitored subnetworks, which makes it ap-
plicable for a real-world deployment. Among the distributed CIDSs described in this
article, Quicksand and DOMINO are the most promising approaches. Quicksand imple-
ments a distributed pattern detection mechanism for linking events from different host
and therefore is able to detect complex distributed attacks. In addition, DOMINO, a
network-based CIDS that uses a P2P overlay for communication among its components
and combines conventional detection methods with honeypots, is another interesting
example from this class.
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8.2. Research Gaps and Future Work

As one major outcome of this survey, we identified a research gap in the area of CIDSs.
There is no scalable and viable solution for carrying out distributed intrusion detec-
tion in large networks. So far, only centralized CIDSs seem to have practical relevance
because some of them are already deployed for the protection of small to medium-sized
networks, such as SURFcert IDS (cf. Section 4.2). However, they do not scale with
the number of monitors, and their central analysis unit is a SPoF. Decentralized and
distributed CIDSs allow scaling to large networks, but are still in early stages of devel-
opment. Most are either restricted to specific attack scenarios only or employ simplistic
methods for information exchange and data correlation. As a result, they cannot pro-
vide the same detection accuracy as centralized CIDSs. To overcome this drawback,
additional research into data correlation techniques is required. The problem is that
intrusion detection attempts to find anomalies in data without knowing exactly what
these anomalies look like. Hence, data correlation techniques are required that do not
presume knowledge about the attributes on which the correlation is performed.

In addition to better data correlation techniques, more sophisticated techniques for
anomaly detection are required that operate on exchanged data. For example, such
methods could establish common anomaly detection models in cooperation with differ-
ent monitors.

Furthermore, especially distributed CIDSs can greatly benefit from ongoing research
into distributed P2P algorithms. Most distributed CIDSs employ a DHT for storing data
and performing alert correlation, such as that based on publish-subscribe techniques
like LarSID [Zhou et al. 2007] (cf. Section 6.1.2). More recent P2P approaches like Skip-
net [Harvey et al. 2003] provide much better locality properties than DHTSs. Locality
in the resulting overlay eases the coupling and information exchange of close-by moni-
tors, thus decreasing signaling overhead. Furthermore, locality can also be linked with
the privacy requirement (cf. Section 2.1), making it possible to deploy CIDSs even in
highly diverse network environments in which the sharing of alert data across multiple
domains is required.

In this article, we discussed CIDSs approaches only qualitatively. Due to the lack
of available implementations of CIDSs, no extensive quantitative evaluation (e.g., re-
garding their provided detection accuracy) can be provided. To make it worse, there
is no up-to-date dataset available that would provide a fair comparison. Most security
researchers still rely on the DARPA intrusion detection dataset [Lippmann et al. 2000]
from 1999, which is outdated regarding its traffic patterns and also with respect to
the recorded attacks. Hence, additional research efforts also are required to obtain
datasets that allow a fair evaluation of different CIDSs.
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