## April 10 Math 2306 sec. 51 Spring 2023

## A Look Ahead: Solving IVPs

If $f(t)$ is defined on $[0, \infty)$, is differentiable, and has Laplace transform $F(s)=\mathscr{L}\{f(t)\}$, then*

$$
\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)
$$

Use this result to solve the initial value problem

[^0]$$
y^{\prime}(t)+2 y(t)=4, \quad y(0)=1
$$

Take $\mathcal{L}$ of the ODE

$$
\begin{gathered}
y^{\prime}(t)+2 y(t)=4, \quad y(0)=1 \\
\mathcal{L}\left\{y^{\prime}+2 y\right\}=\mathscr{L}\{4\} \\
\mathscr{L}\left\{y^{\prime}\right\}+z \mathcal{L}\{y\}=4 \mathcal{L}\{1\} \\
\text { Let } \mathscr{L}\{y(t)\}=Y(s) \\
s Y(s)-y(0)+2 Y(s)=\frac{4}{5}
\end{gathered}
$$

Isolate $\varphi(s)$

$$
\begin{aligned}
& s Y(s)-1+2 Y(s)=\frac{4}{5} \\
& s Y(s)+2 Y(s)=\frac{4}{5}+1
\end{aligned}
$$

$$
\begin{gathered}
(s+2) Y(s)=\frac{4+s}{s} \\
Y(s)=\frac{4+s}{s(s+2)}
\end{gathered}
$$

This is the transform of the solution to the IVP

Find $y(t)=\mathcal{L}^{-1}[\psi(s)]$.
Partial fractions

$$
\begin{aligned}
& \frac{4+s}{s(s+2)}=\frac{A}{s}+\frac{B}{s+2} \quad \begin{array}{c}
\text { Clear } \\
\text { fraction' }
\end{array} \\
& 4+s=A(s+2)+B s
\end{aligned}
$$

Set $S=0$

$$
4+0=A(0+2) \Rightarrow A=2
$$

Set $s=-2 \quad 4-2=B(-2) \Rightarrow B=-1$

$$
\begin{aligned}
\Psi(s) & =\frac{2}{5}-\frac{1}{s+2} \\
y(t) & =\mathscr{L}^{-1}\left\{\frac{2}{s}-\frac{1}{s+2}\right) \\
& =2 \mathcal{L}^{-1}\left(\frac{1}{5}\right)-\mathcal{L}^{-1}\left(\frac{1}{s+2}\right\rangle \\
& =2(1)-e^{-2 \psi}
\end{aligned}
$$

The solution to the IVP is

$$
y=2-e^{-z t}
$$

$$
y^{\prime}(t)+2 y(t)=4, \quad y(0)=1
$$

Check the IC: $y(0)=2-e^{\circ}=2-1=1$
Check ODE: $\quad y^{\prime}=2 e^{-z t}$

$$
\begin{array}{rl}
y^{\prime}+2 y \stackrel{?}{=} 4 & ? \\
2 e^{-2 t}+2\left(2-e^{-2 t}\right) & =4 \\
2 e^{-2 t}+4-2 e^{-2 t} & \stackrel{?}{=} 4 \\
4=4 & V
\end{array}
$$

Section 15: Shift Theorems

Suppose we wish to evaluate $\mathscr{L}^{-1}\left\{\frac{2}{(s-1)^{3}}\right\}$. Does it help to know that $\mathscr{L}\left\{t^{2}\right\}=\frac{2}{s^{3}} ?$

Note that by definition

$$
\begin{array}{rlrl}
e^{\nu^{t}} \mathscr{L}\left\{e^{t} t^{2}\right\} & =\int_{0}^{\infty} e^{-s t} e^{t} t^{2} d t & e^{-s t} e^{t} & =e^{-s t+t} \\
& =\int_{0}^{\infty} e^{-(s-1) t} t^{2} d t & & =e^{-(s-1) t} \\
& =\int_{0}^{\infty} e^{-\omega t} t^{2} d t & \text { Let } \omega=s-1 \\
& =\frac{2!}{\omega^{3}}=\frac{2!}{(s-1)^{3}} &
\end{array}
$$

## Shift (or translation) in $s$.

Theorem: Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

We can state this in terms of the inverse transform. If $F(s)$ has an inverse Laplace transform, then

$$
\mathscr{L}^{-1}\{F(s-a)\}=e^{a t} \mathscr{L}^{-1}\{F(s)\} .
$$

We call this a translation (or a shift) in $s$ theorem.

## Example:

Suppose $f(t)$ is a function whose Laplace transform ${ }^{1}$

$$
F(s)=\mathscr{L}\{f(t)\}=\frac{1}{\sqrt{s^{2}+9}}
$$

Evaluate

$$
\mathscr{L}\left\{e^{-2 t} f(t)\right\}=F(s-(-z))=\frac{1}{\sqrt{(s+z)^{2}+q}}
$$

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

${ }^{1}$ It's not in our table, but this is an actual function known as a Bessel function.를

Examples: Evaluate

$$
\begin{aligned}
& \text { (a) } \mathscr{L}\left\{t^{6} e^{3 t}\right\}=\frac{6!}{(s-3)^{7}} \\
& \mathscr{L}\left\{t^{6}\right\}=\frac{6!}{S^{7}}=F(s) \quad a=3 \quad F(s-3)
\end{aligned}
$$

(b) $\mathscr{L}\left\{e^{-t} \cos (t)\right\}=\frac{s+1}{(s+1)^{2}+1}$

$$
\mathcal{L}\{\cos t\}=\frac{s}{s^{2}+1^{2}} \quad a=-1 \quad F(s-(-1))=F(s+1)
$$

(c) $\mathscr{L}\left\{e^{-t} \sin (t)\right\}=\frac{1}{(s+1)^{2}+1}$

$$
\mathcal{L}[\sin t]=\frac{1}{s^{2}+1}=F(s) \quad F(s+1)
$$

Inverse Laplace Transforms (completing the square)
(a) $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\}$
$s^{2}+2 s+2$ is irreducible
Complete the square

$$
\begin{aligned}
& s^{2}+2 s+1-1+2= \\
& (s+1)^{2}+1
\end{aligned}
$$

$$
\frac{s}{s^{2}+2 s+2}=\frac{s}{(s+1)^{2}+1}
$$

Looks like

$$
\frac{s}{s^{2}+1} \circ \sim \frac{1}{s^{2}+1}
$$

we reed $s+1$ in place of every $s$.

$$
\begin{aligned}
& s=s+1-1 \\
& \frac{s}{(s+1)^{2}+1}=\frac{s+1-1}{(s+1)^{2}+1} \\
&=\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1} \\
& \mathscr{L}^{-1}\left[\frac{s}{s^{2}+2 s+2}\right]=\mathscr{L}^{-1}\left[\frac{s+1}{(s+1)^{2}+1}\right]-\mathscr{L}^{-1}\left\{\frac{1}{(s+1)^{2}+1}\right\} \\
&=e^{-t} \mathscr{L}^{-1}\left[\frac{s}{s^{2}+1}\right]-e^{-t} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\}
\end{aligned}
$$

$$
=e^{-t} \cos t-e^{-t} \sin t
$$


[^0]:    * See the worksheet 12.

