April 10 Math 2306 sec. 52 Spring 2023

A Look Ahead: Solving IVPs

If $f(t)$ is defined on $[0, \infty)$, is differentiable, and has Laplace transform $F(s)=\mathscr{L}\{f(t)\}$, then*

$$
\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)
$$

Use this result to solve the initial value problem

$$
y^{\prime}(t)+2 y(t)=4, \quad y(0)=1
$$

* See the worksheet 12.

Take \mathcal{L} of the ODE

$$
\begin{gathered}
y^{\prime}(t)+2 y(t)=4, \quad y(0)=1 \\
\mathcal{L}\left\{y^{\prime}+2 y^{\prime}\right\}=\mathscr{L}\{4\} \\
\mathcal{L}\left\{y^{\prime}\right\}+2 \mathscr{L}\left\{y^{\prime}\right\}=4 \mathcal{L}\{1\} \\
\text { Let } \mathcal{L}\{y(t)\}=Y(s) \\
s Y(s)-y(0)+2 Y(s)=\frac{4}{s}
\end{gathered}
$$

Plug in $y(0)=1$ and isolate $Y(s)$

$$
\begin{aligned}
& s Y(s)-1+2 Y(s)=\frac{4}{s} \\
& s Y(s)+2 Y(s)=\frac{4}{s}+1 \\
& (s+2) Y(s)=\frac{4+s}{s}
\end{aligned}
$$

$$
Y(s)=\frac{4+s}{s(s+2)} \longleftrightarrow \begin{aligned}
& \text { This is the tran form } \\
& \text { of the solution to the }
\end{aligned}
$$ of the solution to the IUP

Find $y(t)=\mathcal{L}^{-1}\{Y(s)\}$

Partial fraction:

$$
\begin{aligned}
& \frac{4+s}{s(s+2)}=\frac{A}{s}+\frac{B}{s+s} \\
& u+s=A(s+2)+B s \\
& Y(s)=\frac{2}{s}-\frac{1}{s+2} \\
& s+0=1(a+0) \rightarrow A=2 \\
& 4-2=B(-2) \rightarrow B=-1
\end{aligned}
$$

$$
\begin{aligned}
y(t) & =\mathcal{L}^{\prime}\{Y(s)\} \\
& =2 \mathcal{L}^{-1}\left\{\frac{1}{5}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\} \\
& =2(1)-e^{-2 t}
\end{aligned}
$$

The solution to the IVP is:

$$
y=2-e^{-2 t}
$$

$$
y^{\prime}(t)+2 y(t)=4, \quad y(0)=1
$$

Check the IC (Initial Condition): $y(0)=2-e^{-2(0)}=2-1=1$
Check the ODE: $y^{\prime}=2 e^{-2 t}$

$$
\begin{gathered}
y^{t}+2 y=? 4 \\
2 e^{-2 t}+2\left(2-e^{-2 t}\right)=4 \\
2 e^{-2 t}+4-2 e^{-2 t}=4 \\
4=4
\end{gathered}
$$

Section 15: Shift Theorems

Suppose we wish to evaluate $\mathscr{L}^{-1}\left\{\frac{2}{(s-1)^{3}}\right\}$. Does it help to know that $\mathscr{L}\left\{t^{2}\right\}=\frac{2}{s^{3}}$?

Note that by definition

$$
\begin{aligned}
e^{1+} \mathscr{L}\left\{e^{t} t^{2}\right\} & =\int_{0}^{\infty} e^{-s t} e^{t} t^{2} d t \quad e^{-s t} \cdot e^{t}=e^{t-s t} \cdot e^{-(s-1) t} \\
& =\int_{0}^{\infty} e^{-(s-1) t} t^{2} d t \quad \text { Lect } \omega=s-1 \\
& =\int_{0}^{\infty} e^{-\omega t} t^{2} d t \\
& =\frac{2!}{\omega^{3}}=\frac{2!}{(s-1)^{3}}
\end{aligned}
$$

Shift (or translation) in s.

Theorem: Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

We can state this in terms of the inverse transform. If $F(s)$ has an inverse Laplace transform, then

$$
\mathscr{L}^{-1}\{F(s-a)\}=e^{a t} \mathscr{L}^{-1}\{F(s)\} .
$$

We call this a translation (or a shift) in s theorem.

Example:

Suppose $f(t)$ is a function whose Laplace transform ${ }^{1}$

$$
F(s)=\mathscr{L}\{f(t)\}=\frac{1}{\sqrt{s^{2}+9}}
$$

Evaluate

$$
\mathscr{L}\left\{e^{-2 t} f(t)\right\}=\frac{1}{\sqrt{(s+Q)^{2}+9}}
$$

${ }^{1}$ It's not in our table, but this is an actual function known as a Bessel function.巨

Examples: Evaluate
(a) $\mathscr{L}\left\{t^{6} e^{3 t}\right\}=\frac{6!}{(s-3)^{7}} \quad, \mathscr{L}\left\{t^{6}\right\}=\frac{6!}{s^{7}}=F(s)$
(b) $\mathscr{L}\left\{e^{-t} \cos (t)\right\}=\frac{s+1}{(s t 1)^{2}+1}, \quad \mathcal{L}\{\cos t\}=\frac{s}{\delta^{2}+1}=F(s)$ $a=-1 \quad f(s-(-1))=F(s+1)$
(c) $\mathscr{L}\left\{e^{-t} \sin (t)\right\}=\frac{1}{(s+1)^{2}+1}, \quad \mathscr{L}\{\sin t\}=\frac{1}{\delta^{2}+1}$

Inverse Laplace Transforms (completing the square)

$$
\begin{aligned}
& \text { (a) } \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\} \begin{array}{r}
s^{2}+2 s+2 \text { is irreducible } \Rightarrow \text { Complete } \\
s^{2}+2 s+1-1+2 \Rightarrow(s+1)^{2}+1
\end{array} \\
& =\mathcal{L}^{-1}\left\{\frac{s}{(s+1)^{2}+1}\right\}, \quad \frac{s}{(s+1)^{2}+1} \quad \begin{array}{l}
\text { need } s+1 \text { where every } s \text { is } \\
\text { Note } s=s+1-1
\end{array} \\
& \frac{s}{(s+1)^{2}+1}=\frac{s+1-1}{(s+1)^{2}+1}=\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1} \\
& =\mathcal{L}^{-1}\left\{\frac{s}{(s+1)^{2}+1}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}+1}\right\} \quad \mathcal{L}^{-1}\{F(s-a)\}=e^{a t} \mathcal{L}\{F(s)\} \\
& \frac{s}{s^{2}+1^{2}} \quad \frac{1}{s^{2}+1^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-t} \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}-e^{-t} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\} \\
& =e^{-t} \cos t-e^{-t} \sin t
\end{aligned}
$$

