April 10 Math 3260 sec. 51 Spring 2024

Section 5.2: The Characteristic Equation

Recall

- For $n \times n$ matrix A, a nonzero vector \mathbf{x} and scalar λ are an eigenvector-eigenvalue pair provided $A \mathbf{x}=\lambda \mathbf{x}$.
- For eigenvalue λ, the subspace $\{\mathbf{x} \mid A \mathbf{x}=\lambda \mathbf{x}\}=\operatorname{Nul}(A-\lambda I)$ is called the eigenspace of A corresponding to λ.
- The polynomial equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation, and λ is an eigenvalue if and only if it's a solution to this equation.

Recall

- The eigenvalues of a triangular matrix are the diagonal entries.
- A matrix A is singular if and only if $\lambda=0$ is an eigenvalue (i.e., it's invertible if and only if $\lambda=0$ is NOT an eigenvalue).
- The algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic equation.
- The geometric multiplicity of an eigenvalue is the dimension of its corresponding eigenspace.

Similarity

Definition:

Two $n \times n$ matrices A and B are said to be similar if there exists an invertible matrix P such that

$$
B=P^{-1} A P .
$$

The mapping $A \mapsto P^{-1} A P$ is called a similarity transformation ${ }^{2}$.
${ }^{a}$ Note: similarity is NOT related to row equivalence.

Theorem:

If A and B are similar matrices, then they have the same characteristic equation, and hence the same eigenvalues.

Example
Show that $A=\left[\begin{array}{cc}-18 & 42 \\ -7 & 17\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 0 \\ 0 & -4\end{array}\right]$ are similar with the matrix P for the similarity transformation given by $P=\left[\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right]$.
$B=P^{-1} A P$. Let's find P^{-1}

$$
\begin{aligned}
\operatorname{det}(P) & =2\left(11-1(3)=-1 \cdot P^{-1}=\frac{1}{-1}\left[\begin{array}{cc}
1 & -3 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right]\right. \\
P^{-1} A P & =\left[\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right]\left[\begin{array}{cc}
2 & 3 \\
1 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
6 & -12 \\
3 & -4
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
3 & 0 \\
0 & -4
\end{array}\right] \quad \begin{array}{r}
-36+42 \\
-54+42=-12
\end{array} \\
& =B \text { so } B=P^{-1} A P
\end{aligned}
$$

Example Continued...
Show that the columns of P are eigenvectors of A where

$$
A=\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right] \text { and } \begin{aligned}
P & =\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right] . \\
& =\left[\begin{array}{ll}
\vec{p} & \vec{p}_{2}
\end{array}\right]
\end{aligned}
$$

we need to show thick $\hat{A}_{p_{1}}=\lambda, \vec{p}_{1}$ and

$$
\begin{aligned}
& A \vec{p}_{2}=\lambda_{2} \vec{p}_{2} \\
& A \vec{p}_{1}=\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
6 \\
3
\end{array}\right]=3\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& A \vec{p}_{2}=\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
-12 \\
-4
\end{array}\right]=-4\left[\begin{array}{l}
3 \\
1
\end{array}\right]
\end{aligned}
$$

Eigenvalues of a real matrix need not be real Find the eigenvalues of the matrix $A=\left[\begin{array}{cc}4 & 3 \\ -5 & 2\end{array}\right]$.
solve $\operatorname{det}(A-\lambda I)=0$

$$
\begin{aligned}
\operatorname{dtt}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{cc}
4-\lambda & 3 \\
-5 & 2-\lambda
\end{array}\right]=(4-\lambda)(2-\lambda)+15 \\
& =\lambda^{2}-6 \lambda+8+15 \\
& =\lambda^{2}-6 \lambda+23
\end{aligned}
$$

The characleris $t .2$ equation is

$$
\lambda^{2}-6 \lambda+23=0
$$

Using the quadratic formula

$$
\begin{aligned}
\lambda & =\frac{6 \pm \sqrt{(-6)^{2}-4(1)(23)}}{2(1)} \\
& =\frac{6 \pm \sqrt{36-92}}{2} \\
& =\frac{6 \pm \sqrt{-56}}{2}=\frac{6 \pm 2 \sqrt{14} i}{2} \\
& =3 \pm \sqrt{14} i
\end{aligned}
$$

A has no eigenvectors in \mathbb{R}^{2}.

Section 5.3: Diagonalization
Motivational Example:
Determine the eigenvalues of the matrix D^{6} (that's D raised to the sixth power), where $D=\left[\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right]$. we con find D^{6}.

$$
\begin{aligned}
D^{2}=D D & =\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
2^{2} & 0 \\
0 & (-1)^{2}
\end{array}\right] . \\
D^{3}=D^{2} D & =\left[\begin{array}{cc}
2^{2} & 0 \\
0 & (-1)^{2}
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
2^{3} & 0 \\
0 & (-1)^{3}
\end{array}\right] \\
\vdots & \lambda_{1}=2^{6} \\
D^{6} & =\left[\begin{array}{cc}
2^{6} & 0 \\
0 & (-1)^{6}
\end{array}\right] \quad \begin{array}{l}
\lambda_{2}=(-1)^{6}
\end{array}
\end{aligned}
$$

Recall that a matrix D is diagonal if it is both upper and lower triangular (its only nonzero entries are on the diagonal).

Theorem

If D is a diagonal matrix with diagonal entries $d_{i j}$, then D^{k} is diagonal with diagonal entries $d_{i j}^{k}$ for positive integer k. Moreover, the eigenvalues of D are the diagonal entries.

$$
D=\left[\begin{array}{cccc}
d_{11} & 0 & \cdots & 0 \\
0 & d_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n n}
\end{array}\right] \Longrightarrow D^{k}=\left[\begin{array}{cccc}
d_{11}^{k} & 0 & \cdots & 0 \\
0 & d_{22}^{k} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n n}^{k}
\end{array}\right]
$$

Powers and Similarity
Suppose A and B are similar matrices with similarity transform matrix P-ie., $B=P^{-1} A P$. Show that
a. A^{2} and B^{2} are similar with the same P,
b. A^{3} and B^{3} are similar with the same P.

Given $B=P^{-1} A P$.

$$
\begin{aligned}
B^{2} & =B B \\
& =\left(P^{-1} A P\right)\left(P^{-1} A P\right) \\
& =P^{-1} A \underbrace{\left(P P^{-1}\right.}_{\tilde{I}}) A P \\
& =P^{-1} A A P=P^{-1} A^{2} P
\end{aligned}
$$

$$
\begin{aligned}
B^{3} & =B^{2} B \\
& =\left(P^{-1} A^{2} P\right)\left(P^{-1} A P\right) \\
& =P^{-1} A\left(P \cdot P^{-1}\right) A P \\
& =P^{-1} A^{2} A P \\
& =P^{-1} A^{3} P
\end{aligned}
$$

In general, $B^{k}=P^{-1} A^{k} P$
for $k \geqslant 2$.

Diagonalizability

Defintion:

An $n \times n$ matrix A is called diagonalizable if it is similar to a diagonal matrix D. That is, provided there exists a nonsingular matrix P such that $D=P^{-1} A P$-i.e. $A=P D P^{-1}$.

Theorem:

The $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, the matrix P is the matrix whose columns are the n linearly independent eigenvectors of A.

Example
Diagonalize the matrix A if possible. $A=\left[\begin{array}{rrr}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$

- Find eigenvalues,
- Find eigenvectors,
- If there ane 3 lin. ind. evectors, form P.

$$
\begin{aligned}
& \text { F:N e.val. } \\
& \quad \operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 3 & 3 \\
-3 & -5-\lambda & -3 \\
3 & 3 & 1-\lambda
\end{array}\right] \\
& =(1-\lambda)\left|\begin{array}{cc}
-5-\lambda & -3 \\
3 & 1-\lambda
\end{array}\right|-3\left|\begin{array}{cc}
-3 & -3 \\
3 & 1-\lambda
\end{array}\right|+3\left|\begin{array}{cc}
-3 & -5-\lambda \\
3 & 3
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =(1-\lambda)[-(s+\lambda)(1-\lambda)+9]-3(-3(1-\lambda)+9)+3(-9+3(+5+\lambda)) \\
& =(1-\lambda)\left(-\left(-\lambda^{2}-4 \lambda+5\right)+9\right)-3(3 \lambda+6)+3(-9+15+3 \lambda) \\
& =(1-\lambda)\left(\lambda^{2}+4 \lambda+4\right)-3(3 \lambda+6)+3(3 \lambda+6) \\
& =(1-\lambda)(\lambda+2)^{2}
\end{aligned}
$$

Charaderistic eqn is $(1-\lambda)(x+2)^{2}=0$ The eisenvalies are $\lambda_{1}=1$ and $\lambda_{2}=\lambda_{3}=-2$ Find eigelvectors.

For $\lambda_{1}=1$, solm $\left(A-\lambda_{1} I\right) \vec{x}=\overrightarrow{0}$

$$
\begin{aligned}
& A-1 I=\left[\begin{array}{ccc}
0 & 3 & 3 \\
-3 & -6 & -3 \\
3 & 3 & 0
\end{array}\right] \xrightarrow{\operatorname{rrcf}}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \begin{array}{l}
x_{1}=x_{3} \\
x_{2}=-x_{3} \\
x_{3}-\text {-fee }
\end{array} \\
& \vec{x}=x_{3}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \text { wt } \vec{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] .
\end{aligned}
$$

For $\lambda_{2,3}=-2 \quad(A+2 I) \vec{x}=\overrightarrow{0}$

$$
\begin{aligned}
& A+2 I=\left[\begin{array}{ccc}
3 & 3 & 3 \\
-3 & -3 & -3 \\
3 & 3 & 3
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \vec{X}=x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \quad x_{1}=-x_{2}-x_{3} \\
& x_{2}, x_{3}-\text { froe }
\end{aligned}
$$

Let $\vec{v}_{2}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$ and $\vec{V}_{3}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.

$$
\begin{gathered}
\text { set } P=\left[\begin{array}{lll}
\vec{V}_{1} & \vec{V}_{2} & \vec{V}_{0}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \\
P^{-1}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right] . \\
D=\underbrace{-1}_{\lambda_{1}=1} A P=-2
\end{gathered}
$$

