April 11 Math 3260 sec. 51 Spring 2022

Section 5.1: Eigenvectors and Eigenvalues

Definition: Let A be an $n \times n$ matrix. A nonzero vector **x** such that

$$A\mathbf{x} = \lambda \mathbf{x}$$

for some scalar λ is called an **eigenvector** of the matrix A.

A scalar λ such that there exists a nonzero vector \mathbf{x} satisfying $A\mathbf{x} = \lambda \mathbf{x}$ is called an **eigenvalue** of the matrix A. Such a nonzero vector \mathbf{x} is an eigenvector corresponding to λ .

Eigenspace

Definition: Let A be an $n \times n$ matrix and λ and eigenvalue of A. The set of all eigenvectors corresponding to λ together with the zero vector—i.e. the set

$$\{\mathbf{x} \in \mathbb{R}^n \mid \text{ and } A\mathbf{x} = \lambda \mathbf{x}\},$$

is called the **eigenspace of** *A* **corresponding to** λ .

Remark: The eigenspace is the same as the null space of the matrix $A - \lambda I$. It follows that the eigenspace is a subspace of \mathbb{R}^n .

Theorems

Theorem: If A is an $n \times n$ triangular matrix, then the eigenvalues of A are its diagonal elements.

Theorem: A square matrix *A* is invertible if and only if zero is **not** and eigenvalue.

Theorem (adding more to the invertible matrix theorem)

The $n \times n$ matrix A is invertible if and only if¹

- (s) The number 0 is not an eigenvalue of A.
- (t) The determinant of A is nonzero.

¹This is nothing new, we're just adding to the list.

Theorems

Theorem: If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are eigenvectors of a matrix A corresponding to distinct eigenvalues, $\lambda_1, \dots, \lambda_p$ then the set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly independent.

5/50

Linear Independence

Show that if \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of a matrix A with corresponding eigenvalues λ_1 and λ_2 where $\lambda_1 \neq \lambda_2$, then $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly independent.

well create 2 equations from this; one by multiplying by A and a second by multiplying by λ_i .

$$A(c_1\vec{v}_1 + c_2\vec{v}_2) = A\vec{o} = \vec{0}$$

$$c_1 A\vec{v}_1 + c_2 A\vec{v}_2 = \vec{0}$$

$$C_1 \lambda_1 \vec{V}_1 + C_2 \lambda_2 \vec{V}_2 = \vec{O}$$
 $C_1 \lambda_1 \vec{V}_1 + C_2 \lambda_1 \vec{V}_2 = \vec{O}$

cubtract $C_z(\lambda_z - \lambda_1) \vec{V}_z = \vec{0}$ $\vec{V}_z \neq \vec{0}$ because its an eigenvector

$$\lambda_2 - \lambda_1 \neq 0$$
. because $\lambda_1 \neq \lambda_2$

Hence Cz = 0.

The original equation be comes

As an eigenvector, V, +0, hence C,=0

Thatis, (V., V2) is linearly independent

Section 5.2: The Characteristic Equation

Find the eigenvalues of $A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$ by appealing to the fact that the equation $A\mathbf{x} = \lambda \mathbf{x}$ can be restated as:

Find a nontrivial solution of the homogeneous equation

$$(A - \lambda I)\mathbf{x} = \mathbf{0}.$$

$$det(A - \lambda I) = 0.$$

$$A - \lambda I = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 3 \\ 3 & -6 - \lambda \end{bmatrix}$$

$$\det (A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & 3 \\ 3 & -6 - \lambda \end{bmatrix} = (2 - \lambda)(-6 - \lambda) - 3.3$$

Salve we need dx(A-XI)=0.

$$\lambda^{2} + 4\lambda - 21 = 0$$

$$\lambda^2 + 4\lambda - 21 = 0$$

 $(\lambda+7)(\lambda-3)=0 \Rightarrow \lambda=-7 \sim \lambda=3$

Con we find
$$\vec{X}$$
 such that $A\vec{X} = -7\vec{X}$

$$\begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix} \begin{bmatrix} \vec{X}_1 \\ \vec{X}_2 \end{bmatrix} = -7 \begin{bmatrix} \vec{X}_1 \\ \vec{X}_2 \end{bmatrix} \Rightarrow \begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} \vec{X}_1 \\ \vec{X}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

10/50

April 11, 2022

$$\begin{bmatrix}
930 \\
310
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 3 & 0 \\
0 & 0 & 0
\end{bmatrix} \Rightarrow \begin{cases}
\chi_1 = -\frac{1}{3}\chi_2 \\
\chi_2 - \text{free}
\end{cases}$$

$$\chi = \chi_2 \begin{bmatrix} -1/3 \\ 1 \end{bmatrix} \quad \text{so} \quad \chi_1 = -\frac{1}{3}\chi_2 \\
\chi_2 - \text{free}
\end{cases}$$
We can go through the same process

with $\chi_2 = 3$.

Characteristic Equation

Definition: For $n \times n$ matrix A, the expression

$$det(A - \lambda I)$$

is an n^{th} degree polynomial in λ . It is called the **characteristic polynomial** of A.

Definition:The equation

$$\det(A - \lambda I) = 0$$

is called the **characteristic equation** of *A*.

Theorem: The scalar λ is an eigenvalue of the matrix A if and only if it is a root of the characteristic equation.

Example

Find the characteristic equation for the matrix and identify all of its eigenvalues.

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 Set up $A \rightarrow X$

April 11, 2022 13/50

This is $\lambda^4 - 14 \chi^3 + 68 \lambda^2 - 130 \lambda + 75$

The eigenvalues one 5,3, and 1.

Multiplicities

Definition: The **algebraic multiplicity** of an eigenvalue is its multiplicity as a root of the characteristic equation. The **geometric multiplicity** is the dimension of its corresponding eigenspace.

Example Find the algebraic and geometric multiplicity of the eigenvalue $\lambda = 5$ of

$$A = \left[\begin{array}{ccccc} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
The characteristic egn was
$$(5 - \lambda)^{2}(3 - \lambda)(1 - \lambda) = 0$$

The algebraic multiplicity of 5 is two.

To find the geometric multiplicity, we find a basis for the eigenspace.

$$A - SI = \begin{pmatrix} 0 & -2 & 6 & -1 \\ 0 & -2 & -8 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & -4 \end{pmatrix}$$

A solution (A-SI) X=0 will look like

$$\vec{X} = X_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

A basis for the eigenspace is $\left(\begin{bmatrix} 1\\0\\0\\0\end{bmatrix}\right)$.

The geometric multiplicity of the eigenvalue 1=5: is one.

Similarity

Definition: Two $n \times n$ matrices A and B are said to be **similar** if there exists an invertible matrix P such that

$$B = P^{-1}AP$$
.

The mapping $A \mapsto P^{-1}AP$ is called a **similarity transformation**².

Theorem: If A and B are similar matrices, then they have the same characteristic equation, and hence the same eigenvalues.

²Note that similarity is NOT related to being row equivalent.

If
$$B = P^{-1}AP$$
, then $det(B - \lambda I) = det(A - \lambda I)$

$$B-\lambda I = P'AP - \lambda I \qquad I = P'AP$$

$$= P'AP - \lambda P'P$$

$$= P'(AP - \lambda P)$$

$$= P'(A - \lambda I)P$$
Now, take the determinant
$$det(B-\lambda I) = det(P'(A-\lambda I)P)$$

Let
$$(B-\lambda I) = \text{Let}(P'(A-\lambda I)P)$$

$$= \text{Let}(P') \text{Let}(A \cdot \lambda I) \text{Let}(P)$$