April 11 Math 3260 sec. 52 Spring 2022

Section 5.1: Eigenvectors and Eigenvalues

Definition: Let *A* be an $n \times n$ matrix. A **nonzero** vector **x** such that

 $A\mathbf{x} = \lambda \mathbf{x}$

for some scalar λ is called an **eigenvector** of the matrix *A*.

A scalar λ such that there exists a nonzero vector **x** satisfying $A\mathbf{x} = \lambda \mathbf{x}$ is called an **eigenvalue** of the matrix *A*. Such a nonzero vector **x** is an *eigenvector corresponding to* λ .

Definition: Let A be an $n \times n$ matrix and λ and eigenvalue of A. The set of all eigenvectors corresponding to λ together with the zero vector-i.e. the set

 $\{\mathbf{x} \in \mathbb{R}^n \mid \text{ and } A\mathbf{x} = \lambda \mathbf{x}\},\$

is called the eigenspace of A corresponding to λ .

Remark: The eigenspace is the same as the null space of the matrix $A - \lambda I$. It follows that the eigenspace is a subspace of \mathbb{R}^n .

> April 11, 2022

Theorem: If A is an $n \times n$ triangular matrix, then the eigenvalues of A are its diagonal elements.

Theorem: A square matrix *A* is invertible if and only if zero is **not** and eigenvalue.

Theorem (adding more to the invertible matrix theorem)

The $n \times n$ matrix A is invertible if and only if¹

- (s) The number 0 is not an eigenvalue of A.
- (t) The determinant of A is nonzero.

¹This is nothing new, we're just adding to the list.

Theorems

Theorem: If $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are eigenvectors of a matrix A corresponding to distinct eigenvalues, $\lambda_1, \ldots, \lambda_p$, then the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is linearly independent.

Linear Independence

Show that if \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of a matrix A with corresponding eigenvalues λ_1 and λ_2 where $\lambda_1 \neq \lambda_2$, then $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly independent.

$$A(c, v_1 + c_2 v_2) = A \vec{o} = \vec{o}$$

イロト イポト イヨト イヨト

$$c_{1}A\overline{v}_{1}+c_{2}A\overline{v}_{2}=\vec{0}$$

$$c_{1}\lambda_{1}\overline{v}_{1}+c_{2}\lambda_{2}\overline{v}_{2}=\vec{0}$$

$$c_{1}\lambda_{2}\overline{v}_{1}+c_{2}\lambda_{2}\overline{v}_{2}=\vec{0}$$
subtract
$$c_{1}(\lambda_{1}-\lambda_{2})\overline{v}_{1}=\vec{0}$$

$$\overline{v}_{1}\neq\overline{0}$$
because \overline{v}_{1} is an eigenvector
$$\lambda_{1}-\lambda_{2}\neq0$$
because they an different eigenvalues
Hence
$$c_{1}=0.$$
The equation becomes
$$c_{2}\overline{v}_{2}=\vec{0}$$

April 11, 2022 7/50

Since \vec{V}_2 is an eigenvector, $\vec{V}_2 \neq \vec{0}$. So $C_2 = 0$. That is $C_1\vec{v}_1 + C_2\vec{V}_2 = \vec{0}$ only if $C_1 = (z=0)$. So $\{\vec{V}_1, \vec{V}_2\}$ is linearly independent.

Section 5.2: The Characteristic Equation

Find the eigenvalues of $A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$ by appealing to the fact that the equation $A\mathbf{x} = \lambda \mathbf{x}$ can be restated as: $\mathbf{v} \geq \mathbf{x} \neq \mathbf{T} \neq \mathbf{X}$

 $A\vec{x} = \lambda \vec{x} \Rightarrow A\vec{x} = \lambda \vec{x} \Rightarrow A\vec{x} - \lambda \vec{x} \vec{x} \Rightarrow (A - \lambda \vec{x}) \vec{x} = \vec{0}$

Find a nontrivial solution of the homogeneous equation

 $(\boldsymbol{A} - \lambda \boldsymbol{I}) \mathbf{x} = \mathbf{0}.$

This requires the matrix A-XI to be singular. This requires its determinant to be zero. We need to solve the equation det(A - XI) = 0

$$A - \lambda I = \begin{bmatrix} z & 3 \\ 3 & -6 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 3 \\ 3 & -6 \end{bmatrix}$$

$$det(A - \lambda I) = (2 - \lambda)(-6 - \lambda) - 3 \cdot 3$$

$$= \lambda^{2} + 4\lambda - 12 - 9$$

$$= \lambda^{2} + 4\lambda - 21$$

$$d\ell (A-\lambda I) = 0 \implies \lambda^{2} + 4\lambda - 2I = 0$$

$$(\lambda + 7)(\lambda - 3) = 0 \implies \lambda = -7 \text{ or } \lambda = 3$$
The eigenvalues are $\lambda_{1} = -7$, $\lambda_{2} = 3$.
Let's Check $\lambda_{2} = 3$. Find \vec{X} such that
$$A \hat{X} = 3\vec{X}$$

$$(I) + (B) + (E) + E = 0$$

April 11, 2022 10/50

$$\begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = 3 \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \implies \begin{bmatrix} -1 & 3 \\ 3 & -9 \end{bmatrix} \begin{bmatrix} X_1 \\ X_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
Using a algorithm defined matrix:
$$\begin{bmatrix} -1 & 3 & 0 \\ -3 & -9 & 0 \end{bmatrix} \xrightarrow{\text{nef}} \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix} = X_1 = 3X_2$$

$$\begin{bmatrix} -1 & 3 & 0 \\ -3 & -9 & 0 \end{bmatrix} \xrightarrow{\text{nef}} \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix} = X_2 - \text{free}^{-1}$$

So we get rigenvectors

 $\vec{X} = X_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix}$

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ April 11, 2022 11/50

Characteristic Equation

Definition: For $n \times n$ matrix A, the expression

```
det(A - \lambda I)
```

is an n^{th} degree polynomial in λ . It is called the **characteristic** polynomial of A.

Definition:The equation

 $\det(A - \lambda I) = 0$

is called the **characteristic equation** of A.

Theorem: The scalar λ is an eigenvalue of the matrix A if and only if it is a root of the characteristic equation.

> April 11, 2022

Example

Find the characteristic equation for the matrix and identify all of its eigenvalues.

 $A = \begin{vmatrix} 3 & -2 & 5 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{vmatrix}$ $A \cdot \lambda \overline{\Box} = \begin{cases} S \cdot \lambda & -2 & 6 & -1 \\ 0 & 3 \cdot \lambda & -8 & 0 \\ 0 & 0 & S \cdot \lambda & 4 \\ 0 & 0 & 0 & 1 - \lambda \end{cases}$

 $d_{\mathcal{X}}(A-\mathcal{X}I) = (\mathcal{S}-\mathcal{X})(\mathcal{S}-\mathcal{X})(\mathcal{S}-\mathcal{X})$

< ロ > < 同 > < 回 > < 回 >

April 11, 2022

$$= (5 - \lambda)^{2} (3 - \lambda) (1 - \lambda)$$

$$= \lambda^{4} - 14 \lambda^{3} + 68 \lambda^{2} - 130 \lambda + 75$$
The eigen values are $\lambda_{1} = 5, \lambda_{2} = 3, \lambda_{3} = 1$

Multiplicities

Definition: The **algebraic multiplicity** of an eigenvalue is its multiplicity as a root of the characteristic equation. The **geometric multiplicity** is the dimension of its corresponding eigenspace.

Example Find the algebraic and geometric multiplicity of the eigenvalue $\lambda = 5$ of

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
The characteristic polynomial is $(s - \lambda)^{2}(3 - \lambda)(1 - \lambda)$

The algebraic multiplicity of $\lambda = 5$ is two.

イロト 不得 トイヨト イヨト ニヨー

April 11, 2022

To find the secondaric multiplicity, we can
find a basis for the eigenspace.

$$A-SI = \begin{bmatrix} 0 & -2 & 6 & -1 \\ 0 & -2 & -8 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & -4 \end{bmatrix}$$

ref $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $X_1 :: \ free \\ X_2 = 0 \\ X_3 = 0 \\ X_4 = 0 \end{bmatrix}$

The eigenvectors look like $\vec{X} = X_i \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

A basis for the sign space is $\left\{ \begin{bmatrix} I \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\}$ The geometric multiplicity of X= 5 is one.

Similarity

Definition: Two $n \times n$ matrices *A* and *B* are said to be **similar** if there exists an invertible matrix *P* such that

$$B=P^{-1}AP.$$

The mapping $A \mapsto P^{-1}AP$ is called a **similarity transformation**².

Theorem: If *A* and *B* are similar matrices, then they have the same characteristic equation, and hence the same eigenvalues.

²Note that similarity is NOT related to being row equivalent.

If $B = P^{-1}AP$, then det $(B - \lambda I) = det(A - \lambda I)$ T = P'P $B - \lambda I = P'AP - \lambda I$ $= P'AP - \lambda P'P$ $= P'(AP - \lambda P)$ $= P'(A - \lambda I)P$ Take the determinant of both sides $dt(B-\lambda I) = dt(P'(A-\lambda I)P)$

▲□ → < 클 → < 클 → < 클 → < 클 → ○ <
 April 11, 2022 20/50

= $dut(P') dut(A - \lambda I) dut(P)$ = $dut(P') dut(P) dt(A - \lambda I)$ 1

 \Rightarrow $d_{A}(B-\lambda I) = d_{A}(A-\lambda I)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □