April 12 Math 3260 sec. 52 Spring 2024

Section 5.3: Diagonalization

Definition:

Two $n \times n$ matrices A and B are said to be similar if there exists an invertible matrix P such that

$$
B=P^{-1} A P .
$$

The mapping $A \mapsto P^{-1} A P$ is called a similarity transformation.

- If A and B are similar, they have the same characteristic equation and hence the same eigenvalues.
- If $B=P^{-1} A P$ for $n \times n$ matrices A, B, and P, then $B^{k}=P^{-1} A^{k} P$ for each integer $k \geq 1$.

Diagonalizability

Defintion:

An $n \times n$ matrix A is called diagonalizable if it is similar to a diagonal matrix D. That is, provided there exists a nonsingular matrix P such that $D=P^{-1} A P$-i.e. $A=P D P^{-1}$.

Theorem:

The $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, the matrix P is the matrix whose columns are the n linearly independent eigenvectors of A.

Example

Diagonalize the matrix A if possible. $A=\left[\begin{array}{rrr}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$
We found that the characteristic polynomial for A was $(1-\lambda)(\lambda+2)^{2}$ giving two distinct eigenvalues,

$$
\lambda_{1}=1, \quad \text { and } \quad \lambda_{2}=\lambda_{3}=-2 .
$$

We found three linearly independent eigenvectors

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right] .
$$

Then $D=P^{-1} A P$ where

$$
D=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] .
$$

Example
Diagonalize the matrix A if possible. $A=\left[\begin{array}{rrr}2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1\end{array}\right]$. (With a little effort, it can be shown that the characteristic polynomial of A is $(1-\lambda)(2+\lambda)^{2}$.)

From the charceteristic poly, the eigen values are $\lambda_{1}=1$ and $\lambda_{2}=\lambda_{3}=-2$.

Solve $(A-1 I) \vec{x}=\overrightarrow{0}$

$$
A-1 I=\left[\begin{array}{ccc}
1 & 4 & 3 \\
-4 & -7 & -3 \\
3 & 3 & 0
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \begin{aligned}
& x_{1}=x_{3} \\
& x_{2}=-x_{3} \\
& x_{3}-\text {-free }
\end{aligned}
$$

$$
\begin{aligned}
& \vec{x}=x_{3}\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] . \quad \text { Let } \vec{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] . \\
& \text { Solve }(A-(-2) I) \vec{x}=\overrightarrow{0} \\
& A+2 I=\left[\begin{array}{rrr}
4 & 4 & 3 \\
-4 & -4 & -3 \\
3 & 3 & 3
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \begin{array}{c}
x_{1}=-x_{2} \\
x_{2}-\text { free } \\
x_{3}=0
\end{array} \\
& \vec{x}=x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] . \\
& \vec{V}_{2}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] .
\end{aligned}
$$

There are only two linearly independent eigenvectors. A is not diagonalizable.

Sufficient Condition for Diagonalizability

Recall: Eigenvectors corresponding to different eigenvalues are linearly independent.

Theorem:

If the $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Remark

This is a sufficiency condition, not a necessity condition. This means that if a matrix has n different eigenvalues, it's guaranteed to be diagonalizable. If it has repeated eigenvalues, it may or may not be diagonalizable.

More on Diagonalizability

Theorem:

Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$.
(a) The geometric multiplicity of λ_{k} is less than or equal to the algebraic multiplicity of λ_{k}.
(b) The matrix is diagonalizable if and only if the sum of the geometric multiplicities is n.
(c) If A is diagonalizable, and \mathcal{B}_{k} is a basis for the eigenspace for λ_{k}, then the collection (union) of bases $\mathcal{B}_{1}, \ldots, \mathcal{B}_{p}$ is a basis for \mathbb{R}^{n}.

Remark: The union of the bases referred to in part (c) is called an eigenvector basis of \mathbb{R}^{n} for the matrix A. This is what was called an eigenbasis in the 3Blue 1Brown video.

Example
Diagonalize the matrix if possible. $A=\left[\begin{array}{cc}8 & -6 \\ 9 & -7\end{array}\right]$.
Characteristic polynomial: $\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1)$

$$
\lambda_{1}=2 \quad \lambda_{2}=-1
$$

For $\lambda_{1}=2$, eisenvectors are $\vec{x}=x_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Let $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
For $\lambda_{2}=1, \quad \vec{x}=x_{2}\left[\begin{array}{c}2 / 3 \\ 1\end{array}\right]$. we con
Choose $\vec{V}_{2}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ letting $x_{2}=3$.
April 10, $2024 \quad 11 / 37$
A is diasonalizable.
Set $P=\left[\begin{array}{ll}\vec{V} & \vec{V}_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right] \quad \operatorname{det}(P)=3-2=1$

$$
\left.\begin{array}{rl}
P^{-1}=\frac{1}{1}\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right] & =\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right] \\
D & =P^{-1} A P
\end{array}\right)=\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
9 & -6 \\
9 & -7
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right] .
$$

Example Continued...
Find A^{6} where $A=\left[\begin{array}{ll}8 & -6 \\ 9 & -7\end{array}\right]$.
Since $\quad D=P^{-1} A P \Rightarrow A=P D P^{-1}$
and $\quad A^{6}=P D^{6} p^{\prime \prime}$

$$
\begin{gathered}
D=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right], D^{6}=\left[\begin{array}{cc}
2^{6} & 0 \\
0 & (-1)^{6}
\end{array}\right]=\left[\begin{array}{cc}
64 & 0 \\
0 & 1
\end{array}\right] \\
A^{6}=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{cc}
64 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
&=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{cc}
192 & -128 \\
-1 & 1
\end{array}\right] \\
&=\left[\begin{array}{ll}
190 & -126 \\
189 & -125
\end{array}\right] \\
& {\left[\begin{array}{ll}
8 & -6 \\
9 & -7
\end{array}\right]\left[\begin{array}{ll}
8 & -6 \\
9 & -7
\end{array}\right] \cdots\left[\begin{array}{ll}
8 & -6 \\
9 & -7
\end{array}\right] }
\end{aligned}
$$

