April 13 Math 3260 sec. 51 Spring 2022

Section 5.2: The Characteristic Equation
Definition: For $n \times n$ matrix A, the expression

$$
\operatorname{det}(A-\lambda I)
$$

is an $n^{\text {th }}$ degree polynomial in λ. It is called the characteristic polynomial of A.

Definition:The equation

$$
\operatorname{det}(A-\lambda I)=0
$$

is called the characteristic equation of A.

Eigenvalues \& Multiplicities

Theorem: The scalar λ is an eigenvalue of the matrix A if and only if it is a root of the characteristic equation.

Definition: The algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic equation. The geometric multiplicity is the dimension of its corresponding eigenspace.

The two multiplicities can be different. The geometric multiplicity is always \leq the algebraic multiplicity.

Similarity

Definition: Two $n \times n$ matrices A and B are said to be similar if there exists an invertible matrix P such that

$$
B=P^{-1} A P .
$$

The mapping $A \mapsto P^{-1} A P$ is called a similarity transformation.

Theorem: If A and B are similar matrices, then they have the same characteristic equation, and hence the same eigenvalues.

Example
Show that $A=\left[\begin{array}{cc}-18 & 42 \\ -7 & 17\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 0 \\ 0 & -4\end{array}\right]$ are similar with the matrix P for the similarity transformation given by $P=\left[\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right]$.
we want to show that $B=P^{\prime \prime} A P$

$$
\begin{aligned}
& \text { Find } P^{-\prime} \cdot d t(P)=2 \cdot 1-1 \cdot 3=-1 \\
& P^{-1}=\frac{1}{-1}\left[\begin{array}{cc}
1 & -3 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right] \\
& P^{-1} A P=\left[\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{ll}
6 & -12 \\
3 & -4
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 & 0 \\
0 & -4
\end{array}\right] \\
& =B
\end{aligned}
$$

Example Continued...
Show that the columns of P are eigenvectors of A where

$$
A=\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right] \text { and } P=\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right] \cdot=\left[\begin{array}{ll}
\vec{p}_{1} & \bar{p}_{2}
\end{array}\right]
$$

we need to show that $\vec{A} \vec{p}_{1}=\lambda_{1} \vec{p}_{1}$ and $A \vec{p}_{2}=\lambda_{2} \vec{p}_{2}$ for some λ_{1} and λ_{2}.

$$
\begin{aligned}
& A \vec{p}_{1}=\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
6 \\
3
\end{array}\right]=3\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& A \vec{p}_{2}=\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
-12 \\
-4
\end{array}\right]=-4\left[\begin{array}{l}
3 \\
1
\end{array}\right]
\end{aligned}
$$

\vec{p}_{1} is an eigenvector wo eigenvalue 3
\vec{p}_{2} is an eigenvector wa eigenvalue -4

Eigenvalues of a real matrix need not be real Find the eigenvalues of the matrix $A=\left[\begin{array}{cc}4 & 3 \\ -5 & 2\end{array}\right]$.

$$
\begin{aligned}
\operatorname{dt}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{cc}
4-\lambda & 3 \\
-5 & 2-\lambda
\end{array}\right] \\
& =(4-\lambda)(2-\lambda)-(-15)=\lambda^{2}-6 \lambda+23
\end{aligned}
$$

Solving $\operatorname{det}(A-\lambda I)=0$

$$
\begin{aligned}
& \lambda^{2}-6 \lambda+23=0 \\
& \lambda^{2}-6 \lambda+9=-23+9=-14 \\
& (\lambda-3)^{2}=-14 \Rightarrow \lambda=3 \pm \sqrt{14} i
\end{aligned}
$$

A has no red eigenvalues or eigenvectors w) real components.

