April 14 Math 2306 sec. 52 Spring 2023

Section 15: Shift Theorems

We have two major shift (a.k.a. translation) theorems.

Theorem: Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

Theorem: If $F(s)=\mathscr{L}\{f(t)\}$ and $a>0$, then

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s)
$$

Recall the Unit Step Function

For $a>0, \quad \mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}$

Figure: The function $\mathscr{U}(t-0)=\mathscr{U}(t)=1$ for $t>0$. Here, we are taking $\mathscr{U}(0)=1$, but depending on the context, it might be taken as 0 or $\frac{1}{2}$.

Alternative Form for Translation in t

It is often the case that we wish to take the transform of a product of the form

$$
g(t) \mathscr{U}(t-a)
$$

in which the function g is not translated.
The main theorem statement

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s) .
$$

can be restated as

$$
\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\} .
$$

This is based on the observation that

$$
g(t)=g((t+a)-a)
$$

Example

$$
\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\}
$$

Example: Find $\mathscr{L}\left\{\cos t \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}=e^{-\frac{\pi}{2} s} \mathscr{L}\left\{\cos \left(t+\frac{\pi}{2}\right)\right\}$

$$
\begin{array}{ll}
a=\frac{\pi}{2} \\
s(t)=\cos t & =e^{-\frac{\pi}{2} s} \mathscr{L}[-\sin t\} \\
& =-e^{-\frac{\pi}{2} s} \frac{1}{s^{2}+1^{2}}=\frac{-e^{-\frac{\pi}{2} s}}{s^{2}+1}
\end{array}
$$

$$
\cos \left(t+\frac{\pi}{2}\right)=\cos t \cos \frac{\pi}{2}-\sin t \sin \frac{\pi}{2}=-\sin t
$$

Example

$$
\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a)
$$

Example: Find $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\}$
we need $f(t)=\mathcal{L}^{-1}\{F(s))$ where $F(s)=\frac{1}{s(s+1)}$

Particle fractions

$$
\frac{1}{s(s+1)}=\frac{A}{s}+\frac{B}{s+1}
$$

$$
1=A(s+1)+B s
$$

Set $s=0 \quad 1=A$

$$
s=-1 \quad 1=-B
$$

$$
\frac{1}{s(s+1)}=\frac{1}{s}-\frac{1}{s+1}
$$

$$
\begin{aligned}
f(t) & =\mathscr{L}^{-1}\left\{\frac{1}{s}-\frac{1}{s+1}\right\} \\
& =\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\} \\
& =1-e^{-t}
\end{aligned}
$$

$$
\begin{aligned}
& f(t)=1-e^{-t} \\
& \mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a) \\
& \mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\}=\left(1-e^{-(t-2)}\right) u(t-2) \\
& a=2
\end{aligned}
$$

