April 15 Math 3260 sec. 51 Spring 2022 Section 5.3: Diagonalization

Motivating Example:

Determine the eigenvalues of the matrix D^3 (that's D cubed), where

$$D = \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix}.$$

$$D^{2} = \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix}.$$

$$D^{2} = \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix} = \begin{bmatrix} 9 & 0 \\ 0 & 16 \end{bmatrix} = \begin{bmatrix} 3^{2} & 0 \\ 0 & (-4)^{2} \end{bmatrix}.$$

$$D^{3} = D^{2}D = \begin{bmatrix} 9 & 0 \\ 0 & 16 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 -4 \end{bmatrix} = \begin{bmatrix} 27 & 0 \\ 0 -64 \end{bmatrix} = \begin{bmatrix} 3^{3} & 0 \\ 0 & (-4)^{3} \end{bmatrix}.$$
The eigenvalues of D^{3} are $3^{3} = 27$ and $-67 = (-4)^{3}$

< ロ > < 同 > < 回 > < 回 >

Diagonal Matrices

Recall: A matrix *D* is diagonal if it is both upper and lower triangular (its only nonzero entries are on the diagonal).

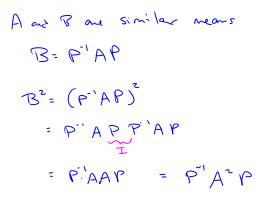
Note: If *D* is diagonal with diagonal entries d_{ii} , then D^k is diagonal with diagonal entries d_{ii}^k for positive integer *k*. Moreover, the eigenvalues of *D* are the diagonal entries.

$$D = \begin{bmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{bmatrix} \implies D^{k} = \begin{bmatrix} d_{11}^{k} & 0 & \cdots & 0 \\ 0 & d_{22}^{k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn}^{k} \end{bmatrix}$$

Powers and Similarity

Suppose A and B are similar matrices with similarity transform matrix P. Show that

- a. A^2 and B^2 are similar with the same P,
- b. A^3 and B^3 are similar with the same *P*.



< □ > < @ > < E > < E > E のへで April 13, 2022 5/66

 $B^3 = B^2 B$ $= (\mathcal{P}' \mathcal{A}^{2} \mathcal{P}) (\mathcal{P}' \mathcal{A} \mathcal{P})$ $= P'A^2 PP'AP$ $= P' A^2 A P = P' A^3 P$ \Rightarrow $B^3 = P'A^3P$ By induction, B^k = P' A^k P

i.e. $\mathcal{D}^2 = \mathcal{P}^1 \mathcal{A}^2 \mathcal{P}$

Diagonalizability

Definition: An $n \times n$ matrix A is called **diagonalizable** if it is similar to a diagonal matrix D. That is, provided there exists a nonsingular matrix P such that $D = P^{-1}AP$ —i.e. $A = PDP^{-1}$.

Theorem: The $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, the matrix P is the matrix whose columns are the n linearly independent eigenvectors of A.

Example

Diagonalize the matrix A if possible.
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

Find the eigen values,

$$dut(A - \lambda I) = det \begin{bmatrix} 1 - \lambda & 3 & 3 \\ -3 & -5 - \lambda & -3 \\ 3 & 3 & 1 - \lambda \end{bmatrix}$$

$$= (1 - \lambda) \begin{bmatrix} -(s + \lambda) & -3 \\ 3 & 1 - \lambda \end{bmatrix} \begin{bmatrix} -3 & -3 \\ -3 & -3 \\ 3 & 1 - \lambda \end{bmatrix} + 3 \begin{bmatrix} -3 & -(s + \lambda) \\ 3 & 3 \end{bmatrix}$$

$$= (1 - \lambda) \begin{bmatrix} -(s + \lambda)(1 - \lambda) + 9 \\ -3 \end{bmatrix} - 3 \begin{bmatrix} -3(1 - \lambda) + 9 \\ -3 \end{bmatrix} + 3 \begin{bmatrix} -9 + 3(s + \lambda) \end{bmatrix}$$

$$= (1-\lambda) \left[\lambda^{2} + 4\lambda + 4 \right] - 3 \left(3\lambda + 6 \right) + 3 \left(3\lambda + 6 \right)$$

- $= (1-\lambda) (\lambda + 2)^{2}$
 - There are two eigenvelves $\lambda_1 = 1$ and $\lambda_2 = -2$.
 - Find a basis for the eigenspace for $\lambda_i = 1$.
 - $A 1 I = \begin{pmatrix} 0 & 3 & 3 \\ -3 & -6 & -3 \\ 3 & 3 & 0 \end{pmatrix} \xrightarrow{\text{(ret)}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{(ret)}} \begin{array}{c} X_1 = X_3 \\ X_2 = -X_3 \\ X_3 = 7 \\ X_4 = 7 \\ X_5 = 7 \\$

Eignvectors an $\overline{\chi} = \chi_3 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$

April 13, 2022 8/66

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let
$$\vec{V}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 as a basis vector.

$$A - (-2)T = \begin{bmatrix} 3 & 3 & 3 \\ -3 & -3 & -3 \\ 3 & 3 & 3 \end{bmatrix} \xrightarrow{\text{rel}} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \xrightarrow{X_1, X_3} \xrightarrow{X_3}$$
one free

eigenvectors
$$\vec{X} = X_2 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + X_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$
.
We $\vec{V}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{V}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ be basis vectors.

Let $P = \begin{bmatrix} \vec{V}, \vec{V}_2 & \vec{V}_3 \end{bmatrix}$ $P = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, $\vec{P}' = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$

 $D = P'AP = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ -1 & -1 & 6 \end{bmatrix} \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 6 & -2 \end{bmatrix}$

April 13, 2022 10/66