# April 15 Math 3260 sec. 52 Spring 2022 Section 5.3: Diagonalization

#### Motivating Example:

Determine the eigenvalues of the matrix  $D^3$  (that's D cubed), where

$$D = \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix}.$$

$$D^{2} = \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix} = \begin{bmatrix} 9 & 0 \\ 0 & 16 \end{bmatrix} = \begin{bmatrix} 3^{*} & 0 \\ 0 & (-4)^{*} \end{bmatrix}$$

$$D^{3} = D^{2} D = \begin{bmatrix} 9 & 0 \\ 0 & 16 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix} = \begin{bmatrix} 27 & 0 \\ 0 & -64 \end{bmatrix}$$

$$= \begin{bmatrix} 3^{3} & 0 \\ 0 & (-4)^{3} \end{bmatrix}$$

$$(1 + 6B + 2 + 2) = 6$$

April 13, 2022 1/25

The eigenvaluer of D' are 27 and -64.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### **Diagonal Matrices**

**Recall:** A matrix *D* is diagonal if it is both upper and lower triangular (its only nonzero entries are on the diagonal).

**Note:** If *D* is diagonal with diagonal entries  $d_{ii}$ , then  $D^k$  is diagonal with diagonal entries  $d_{ii}^k$  for positive integer *k*. Moreover, the eigenvalues of *D* are the diagonal entries.

$$D = \begin{bmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{bmatrix} \implies D^{k} = \begin{bmatrix} d_{11}^{k} & 0 & \cdots & 0 \\ 0 & d_{22}^{k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn}^{k} \end{bmatrix}$$

## Powers and Similarity

Suppose A and B are similar matrices with similarity transform matrix P. Show that

• • • • • • • • • • • •

April 13, 2022

4/25

a.  $A^2$  and  $B^2$  are similar with the same P,

b.  $A^3$  and  $B^3$  are similar with the same *P*.

A and B are similar means  

$$B = P'AP$$
  
 $B^2 = (P'AP)^2$   
 $= (P'AP)(P'AP)$   
 $= P'APP'AP$ 

 $= P^{-1}AAP = P^{-1}A^{2}P$ =) B= P'AP  $\mathcal{B}^{3} = \mathcal{B}^{2}\mathcal{B} = (\mathcal{P}^{-1}\mathcal{A}^{2}\mathcal{P})(\mathcal{P}^{-1}\mathcal{A}\mathcal{P})$ = P'AZAP = P'A'P

By induction  $B^{k} = P^{T} A^{k} P$  for all position integers k.

> < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ > ○ Q (\* April 13, 2022 5/25

# Diagonalizability

**Definition:** An  $n \times n$  matrix A is called **diagonalizable** if it is similar to a diagonal matrix D. That is, provided there exists a nonsingular matrix P such that  $D = P^{-1}AP$ —i.e.  $A = PDP^{-1}$ .

**Theorem:** The  $n \times n$  matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, the matrix P is the matrix whose columns are the n linearly independent eigenvectors of A.

### Example

Diagonalize the matrix A if possible. 
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

Find the eigenvalues.  

$$det(A-\lambda I) = dt \begin{bmatrix} 1-\lambda & 3 & 3\\ -3 & -5-\lambda & -3\\ 3 & 3 & 1-\lambda \end{bmatrix}$$

$$= (1-\lambda) \begin{vmatrix} -(5+\lambda) & -3 \\ -3 & |-\lambda \end{vmatrix} - 3 \begin{vmatrix} -3 & -3 \\ -3 & |-\lambda \end{vmatrix} + 3 \begin{vmatrix} -3 & -(5+\lambda) \\ -3 & |-\lambda \end{vmatrix}$$

$$= (1-\lambda) \left[ -(s+\lambda)(1-\lambda)+q \right] - 3\left[ -3(1-\lambda)+q \right] + 3\left[ -q+3(s+\lambda) \right]$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$= (1-\lambda) \left[ \lambda^{2} + 4\lambda + 4 \right] - 3 \left[ 3\lambda + 6 \right] + 3 \left[ 3\lambda + 6 \right]$$
$$= (1-\lambda) (\lambda+2)^{2}$$

The characteristic equation is  

$$(1-\lambda)(\lambda+2)^2 = 0 \implies \lambda = 1 \text{ and } \lambda_2 = -2.$$

Find bases for the ligen spaces.

For 
$$\lambda_{1} = 1$$
  
 $A - 1I = \begin{bmatrix} 0 & 3 & 3 \\ -3 & -6 & -3 \\ 3 & 3 & 0 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} X_{1} = X_{3}$   
 $X_{2} = -X_{3}$   
 $X_{3}$  free

April 13, 2022 8/25



W V1= [-]].

For 
$$\lambda_2 = -2$$
  
 $A - (-2)T = \begin{pmatrix} 3 & 3 & 3 \\ -3 & -3 & -3 \\ 3 & 3 & 3 \end{pmatrix}$ , right  $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$   
 $X_1 = -X_2 - X_3$   
 $X_2, X_3$  are free

Eigenvectors have the form  $\vec{X} = X_2 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + X_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ Let  $\vec{V}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$  and  $\vec{V}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ . We have 3 linearly in dependent eigenvectors => A is diagonalizable  $\vec{\nabla}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ ,  $\vec{\nabla}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ ,  $\vec{\nabla}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$  $L_{\mathcal{F}} P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ 

April 13, 2022 10/25

$$\mathcal{P}' = \begin{bmatrix} 1 & 1 & 1 \\ 1 & z & 1 \\ -1 & 1 & 0 \end{bmatrix}.$$

$$D = P'AP =$$