April 15 Math 3260 sec. 52 Spring 2022
Section 5.3: Diagonalization
Motivating Example:
Determine the eigenvalues of the matrix D^{3} (that's D cubed), where

$$
\begin{aligned}
& D=\left[\begin{array}{cc}
3 & 0 \\
0 & -4
\end{array}\right] . \\
& D^{2}=\left[\begin{array}{cc}
3 & 0 \\
0 & -4
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
0 & -4
\end{array}\right]=\left[\begin{array}{cc}
9 & 0 \\
0 & 16
\end{array}\right]=\left[\begin{array}{cc}
3^{2} & 0 \\
0 & (-4)^{2}
\end{array}\right] \\
& D^{3}=D^{2} D=\left[\begin{array}{cc}
9 & 0 \\
0 & 16
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
0 & -4
\end{array}\right]=\left[\begin{array}{cc}
27 & 0 \\
0 & -64
\end{array}\right] \\
&=\left[\begin{array}{cc}
3^{3} & 0 \\
0 & (-4)^{3}
\end{array}\right]
\end{aligned}
$$

The erginvaluer of D^{3} are 27 and -64 .

Diagonal Matrices

Recall: A matrix D is diagonal if it is both upper and lower triangular (its only nonzero entries are on the diagonal).

Note: If D is diagonal with diagonal entries $d_{i j}$, then D^{k} is diagonal with diagonal entries $d_{i j}^{k}$ for positive integer k. Moreover, the eigenvalues of D are the diagonal entries.

Powers and Similarity
Suppose A and B are similar matrices with similarity transform matrix P. Show that
a. A^{2} and B^{2} are similar with the same P,
b. A^{3} and B^{3} are similar with the same P.
A and B are similar means

$$
\begin{aligned}
B & =P^{-1} A P \\
B^{2} & =\left(P^{-1} A P\right)^{2} \\
& =\left(P^{-1} A P\right)\left(P^{-1} A P\right) \\
& =P^{-1} A P P_{I}^{-1} A P
\end{aligned}
$$

$$
\begin{aligned}
& =P^{-1} A A P=P^{-1} A^{2} P \\
\Rightarrow B^{2} & =P^{-1} A^{2} P \\
B^{3} & =B^{2} B=(P^{-1} A^{2} \underbrace{P}_{I})\left(P^{-1} A P\right) \\
& =P^{-1} A^{2} A P \\
& =P^{-1} A^{3} P .
\end{aligned}
$$

By induction $\quad B^{k}=\rho^{-1} A^{k} p$ for all postim integers k.

Diagonalizability

Defintion: An $n \times n$ matrix A is called diagonalizable if it is similar to a diagonal matrix D. That is, provided there exists a nonsingular matrix P such that $D=P^{-1} A P$-i.e. $A=P D P^{-1}$.

Theorem: The $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, the matrix P is the matrix whose columns are the n linearly independent eigenvectors of A.

Example
Diagonalize the matrix A if possible. $A=\left[\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$
Find the eigenvalues.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{dt}\left[\begin{array}{cccc}
1 & -\lambda & 3 & 3 \\
-3 & -5-\lambda & -3 \\
3 & 3 & 1-\lambda
\end{array}\right] \\
& =(1-\lambda)\left|\begin{array}{cc}
-(5+\lambda) & -3 \\
3 & 1-\lambda
\end{array}\right|-3\left|\begin{array}{cc}
-3 & -3 \\
3 & 1-\lambda .
\end{array}\right|+3\left|\begin{array}{cc}
-3 & -(5+\lambda) \\
3 & 3
\end{array}\right| \\
& =(1-\lambda)[-(5+\lambda)(1-\lambda)+9]-3[-3(1-\lambda)+9]+3[-9+3(5+\lambda)]
\end{aligned}
$$

$$
\begin{aligned}
& =(1-\lambda)\left[\lambda^{2}+4 \lambda+4\right]-3[3 \lambda+6]+3[3 \lambda+6] \\
& =(1-\lambda)(\lambda+2)^{2}
\end{aligned}
$$

The characteristic equation is

$$
(1-\lambda)(\lambda+2)^{2}=0 \Rightarrow \lambda_{1}=1 \text { and } \lambda_{2}=-2
$$

Find bases for the ligen spaces.
For $\lambda_{1}=1$

$$
\text { For } \lambda_{1}=1 \text { A-1 }=\left[\begin{array}{rrr}
0 & 3 & 3 \\
-3 & -6 & -3 \\
3 & 3 & 0
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \begin{aligned}
& x_{1}=x_{3} \\
& x_{2}=-x_{3} \\
& x_{3} \text { free }
\end{aligned}
$$

The eisenvectors are $\vec{x}=x_{3}\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$
Let $\vec{V}_{1}=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$.

For $\quad \lambda_{2}=-2$

$$
\begin{aligned}
& A-(-2) I=\left[\begin{array}{rrr}
3 & 3 & 3 \\
-3 & -3 & -3 \\
3 & 3 & 3
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& x_{1}=-x_{2}-x_{3} \text { free } \\
& x_{2}, x_{3} \text { are tres }
\end{aligned}
$$

Eigenvectors have the form

$$
\vec{x}=x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Let $\vec{V}_{2}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$ and $\vec{V}_{3}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$. We have
3 linearly in tepondent eigenvectors \Rightarrow
A is diagonalizable.

$$
\vec{V}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right], \vec{V}_{2}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \vec{V}_{3}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Let $P=\left[\begin{array}{lll}\vec{v}_{1} & \vec{V}_{2} & \vec{V}_{3}\end{array}\right]=\left[\begin{array}{ccc}1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& P^{-1}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 1 \\
-1 & 1 & 0
\end{array}\right] \\
& D=P^{-1} A P=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]
\end{aligned}
$$

