April 17 Math 2306 sec. 52 Spring 2023

Section 16: Laplace Transforms of Derivatives and IVPs

Suppose f has a Laplace transform ${ }^{1}, \mathscr{L}\{f(t)\}=F(s)$, and that f is differentiable on $[0, \infty)$. Obtain an expression for the Laplace tranform of $f^{\prime}(t)$ using integration by parts to get

$$
\begin{aligned}
\mathscr{L}\left\{f^{\prime}(t)\right\} & =\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t \\
& =-f(0)+s \int_{0}^{\infty} e^{-s t} f(t) d t \\
& =s F(s)-f(0) .
\end{aligned}
$$

[^0]
Transforms of Derivatives

If $\mathscr{L}\{f(t)\}=F(s)$, we have $\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$. We can use this relationship recursively to obtain Laplace transforms for higher derivatives of f.

For example

$$
\begin{aligned}
\mathscr{L}\left\{f^{\prime \prime}(t)\right\} & =s \mathscr{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \\
& =s(s F(s)-f(0))-f^{\prime}(0) \\
& =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Transforms of Derivatives

For $y=y(t)$ defined on $[0, \infty)$ having derivatives $y^{\prime}, y^{\prime \prime}$ and so forth, if

$$
\mathscr{L}\{y(t)\}=Y(s)
$$

then

$$
\begin{aligned}
\mathscr{L}\left\{\frac{d y}{d t}\right\} & =s Y(s)-y(0) \\
\mathscr{L}\left\{\frac{d^{2} y}{d t^{2}}\right\} & =s^{2} Y(s)-s y(0)-y^{\prime}(0) \\
\mathscr{L}\left\{\frac{d^{3} y}{d t^{3}}\right\} & =s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0) \\
\vdots & \vdots \\
\mathscr{L}\left\{\frac{d^{n} y}{\left.d t^{n}\right\}}\right. & =s^{n} Y(s)-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-\cdots-y^{(n-1)}(0)
\end{aligned}
$$

Laplace Transforms and IVPs
For constants a, b, and c, take the Laplace transform of both sides of the equation and isolate $\mathscr{L}\{y(t)\}=Y(s)$.

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
$$

Let $\mathscr{L}\{g(t)\}=G(s)$.
Take \mathcal{L} of the ODE

$$
\begin{aligned}
& \mathscr{L}\left\{a y^{\prime \prime}+b y^{\prime}+c y\right\}=\mathscr{L}\{g(t)\} \\
& a \mathscr{L}\left\{y^{\prime \prime}\right\}+b \mathscr{L}\left\{y^{\prime}\right\}+c \mathscr{L}\{y\}=G(s)
\end{aligned}
$$

$$
\begin{gathered}
a\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)+b(s Y(s)-y(0))+c Y(s)=G(s) \\
y(0)=y_{0}, y^{\prime}(0)=y_{1} \\
a s^{2} Y(s)-a y_{0} s-a y_{1}+b s Y(s)-b y_{0}+c Y(s)=G(s) \\
\left(a s^{2}+b s+c\right) Y(s)-a y_{0} s-a y_{1}-b y_{0}=G(s) \\
\left(a s^{2}+b s+c\right) Y(s)=a y_{0} s+a y_{1}+b y_{0}+G(s) \\
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
\end{gathered}
$$

Note: The coefficient of Y is the

Characteristic polynonid.

$$
\Psi(s)=\frac{a y_{0} s+a b_{1}+b y_{0}}{a s^{2}+b s+c}+\frac{G(s)}{a s^{2}+b s+c}
$$

The solution to the IVP is

$$
y(t)=\mathscr{L}^{-1}\{Y(s)\}
$$

Solving IVPs

Figure: We use the Laplace transform to turn our DE into an algebraic equation. Solve this transformed equation, and then transform back.

General Form

We get

$$
Y(s)=\frac{Q(s)}{P(s)}+\frac{G(s)}{P(s)}
$$

where Q is a polynomial with coefficients determined by the initial conditions, G is the Laplace transform of $g(t)$ and P is the characteristic polynomial of the original equation.
$\mathscr{L}^{-1}\left\{\frac{Q(s)}{P(s)}\right\} \quad$ is called the zero input response,
and
$\mathscr{L}^{-1}\left\{\frac{G(s)}{P(s)}\right\} \quad$ is called the zero state response.

Solve the IVP using the Laplace Transform

$$
y^{\prime \prime}+7 y^{\prime}+12 y=e^{-t} \quad y(0)=2, \quad y^{\prime}(0)=-6
$$

Let $\mathscr{L}\{y(t)\}=\Psi(s)$

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime \prime}+7 y^{\prime}+12 y\right\}=\mathscr{L}\left\{e^{t}\right\} \\
& \mathscr{L}\left\{y^{\prime \prime}\right\}+7 \mathscr{L}\left\{y^{\prime}\right\}+12 \mathscr{L}\{y\}=\frac{1}{s+1} \\
& s^{2} Y(s)-s y(0)-y^{\prime}(0)+7(s Y(s)-y(0))+12 Y(s)=\frac{1}{s+1} \\
& y(0)=2, \quad y^{\prime}(0)=-6
\end{aligned}
$$

$$
\begin{array}{r}
s^{2} Y(s)-2 s+6+7(s \Psi(s)-2)+12 Y(s)=\frac{1}{s+1} \\
\left(s^{2}+7 s+12\right) Y(s)-2 s+6-14=\frac{1}{s+1} \\
\left(s^{2}+7 s+12\right) Y(s)=\frac{1}{s+1}+2 s+8 \\
Y(s)=\frac{1}{(s+1)\left(s^{2}+7 s+12\right)}+\frac{2(s+4)}{s^{2}+7 s+12} \\
Y(s)=\frac{1}{(s+1)(s+3)(s+4)}+\frac{2(s+4)}{(s+3)(s+4)}
\end{array}
$$

$$
\Psi(s)=\frac{1}{(s+1)(s+3)(s+4)}+\frac{2}{s+3}
$$

Partial fractions

$$
\begin{gathered}
\frac{1}{(s+1)(s+3)(s+4)}=\frac{A}{s+1}+\frac{B}{s+3}+\frac{C}{s+4} \\
1=A(s+3)(s+4)+B(s+1)(s+4)+C(s+1)(s+3)
\end{gathered}
$$

set $s=-1 \quad 1=A(2)(3) \quad \Rightarrow \quad A=\frac{1}{6}$

$$
\begin{array}{ll}
s=-3 & 1=B(-2)(1) \Rightarrow B=\frac{-1}{2} \\
s=-4 & 1
\end{array}
$$

$$
\begin{array}{r}
\Psi(s)=\frac{\frac{1}{6}}{s+1}-\frac{\frac{1}{2}}{s+3}+\frac{\frac{1}{3}}{s+4}+\frac{2}{s+3} \\
Y(s)=\frac{\frac{1}{6}}{s+1}+\frac{\frac{3}{2}}{s+3}+\frac{\frac{1}{3}}{s+4}
\end{array}
$$

The solution to the IVf

$$
\begin{gathered}
y(t)=\mathscr{L}^{-1}\{Y(s)\} \\
y(t)=\frac{1}{6} e^{-t}+\frac{3}{2} e^{-3 t}+\frac{1}{3} e^{-4 t}
\end{gathered}
$$

$$
y(0)=\frac{1}{6}+\frac{3}{2}+\frac{1}{3}=\frac{1}{6}+\frac{9}{6}+\frac{2}{6}=\frac{12}{6}
$$

Unit Impulse

Consider the piecewise constant, rectangular function
$R_{\epsilon}(t)= \begin{cases}\frac{1}{2 \epsilon}, & |t|<\epsilon \\ 0, & |t|>\epsilon\end{cases}$

Figure: For every $\epsilon>0$, the integral of R_{ϵ} over the real line is 1 .

Unit Impulse

We can plot R_{ϵ} for various values of ϵ and see that as ϵ gets smaller, the rectangle gets narrow and tall. But the area of the rectangle is kept constant at 1 .

Figure: $R_{\epsilon}(t)= \begin{cases}\frac{1}{2_{\epsilon}}, & |t|<\epsilon \\ 0, & |t|>\epsilon\end{cases}$

Unit Impulse

The Dirac delta function, denoted by $\delta(\cdot)$, models a strong instantaneous force. One way to define this function is as the limit

$$
\delta(t)=\lim _{\epsilon \rightarrow 0} R_{\epsilon}(t) .
$$

This is not a function in the usual sense, but it has several properties.

- $\int_{-\infty}^{\infty} \delta(t-a) d t=1$ for any real number a.
- $\int_{-\infty}^{\infty} \delta(t-a) f(t) d t=f(a)$ if a is in the domain of the function f.
- $\mathscr{L}\{\delta(t-a)\}=e^{-a s}$ for any constant $a \geq 0$.

Remark: This is an example of what is called a generalized function, generalized functional, or distribution. In this context, it can be thought of as the derivative of the Heaviside step function. That is, for any $a \geq 0$

$$
\frac{d}{d t} \mathscr{U}(t-a)=\delta(t-a)
$$

Solve the IVP using the Laplace Transform

A 1 kg mass is suspended from a spring with spring constant $10 \mathrm{~N} / \mathrm{m}$. A damper induces damping of 6 N per $\mathrm{m} / \mathrm{sec}$ of velocity. The object starts from rest from a position 10 cm above equilibrium. At time $t=1$ second, a unit impulse force is applied to the object. Determine the object's position for $t>0$.

The corresponding IVP for the situation described is

$$
\begin{aligned}
& x^{\prime \prime}+6 x^{\prime}+10 x=\delta(t-1), \quad x(0)=0.1, \quad x^{\prime}(0)=0 \\
& m x^{\prime \prime}+\beta x^{\prime}+k x=f(t)
\end{aligned}
$$

[^0]: ${ }^{1}$ Assume f is of exponential order c for some c.

