April 12 Math 3260 sec. 51 Spring 2024

Section 6.2: Orthogonal Sets

Remark: We know that if $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ is a basis for a subspace W of \mathbb{R}^{n}, then each vector \mathbf{x} in W can be realized (uniquely) as a sum

$$
\mathbf{x}=c_{1} \mathbf{b}_{2}+\cdots+c_{\rho} \mathbf{b}_{p} .
$$

If n is very large, the computations needed to determine the coefficients c_{1}, \ldots, c_{p} may require a lot of time (and machine memory).

Question: Can we seek a basis whose nature simplifies this task? And what properties should such a basis possess?

Orthogonal Sets

Definition:

An indexed set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in \mathbb{R}^{n} is said to be an orthogonal set provided each pair of distinct vectors in the set is orthogonal.
That is, provided

$$
\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0 \quad \text { whenever } \quad i \neq j .
$$

Example: Show that the set $\left\{\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ -4 \\ 7\end{array}\right]\right\}$ is an orthogonal set.

Call these $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}$ in the
given order. wèll compute

$$
\vec{u}_{1} \cdot \vec{u}_{2}, \vec{u}_{1} \cdot \vec{u}_{3} \text { and } \vec{u}_{2} \cdot \vec{u}_{3}
$$

$$
\begin{array}{r}
\left\{\left[\begin{array}{l}
\vec{u}_{1} \\
1 \\
1
\end{array}\right],\left[\begin{array}{r}
\vec{u}_{2} \\
2 \\
1
\end{array}\right],\left[\begin{array}{r}
-1 \\
-4 \\
7
\end{array}\right]\right\} \\
\vec{u}_{3} \cdot \vec{u}_{2}=3(-1)+1(2)+1(1)=-3+2+1=0 \\
\vec{u}_{1} \cdot \vec{u}_{3}=3(-1)+1(-4)+1(7)=-3-4+7=0 \\
\vec{u}_{2} \cdot \vec{u}_{3}=(-1)(-1)+2(-4)+1(7)=1-8+7=0
\end{array}
$$

Orthongal Basis

Definition:

An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis that is also an orthogonal set.

Theorem:

Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. Then each vector \mathbf{y} in W can be written as the linear combination
$\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}, \quad$ where the weights $\quad c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}}$.

Remark: What's nice about this is how simple the formula for the c's is.

Example
$\left\{\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ -4 \\ 7\end{array}\right]\right\}$ is an orthogonal basis of \mathbb{R}^{3}. Express
$\vec{u}_{1} \quad \vec{u}_{2}[-2] \quad \vec{u}_{3}$
the vector $\mathbf{y}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$ as a linear combination of the basis vectors.
we need $\vec{y} \cdot \vec{u}_{i}$ and $\vec{u}_{i} \cdot \vec{u}_{i}$.

$$
\begin{aligned}
& \vec{y} \cdot \vec{u}_{1}=-2(3)+3(1)+0=-3 \\
& \vec{y} \cdot \vec{u}_{2}=-2(-1)+3(2)+0=8 \\
& \vec{y} \cdot \vec{u}_{3}=-2(-1)+3(-4)+0=-10
\end{aligned}
$$

$$
\vec{u}_{1} \cdot \vec{u}_{1}=3^{2}+1^{2}+1^{2}=11
$$

$$
\vec{u}_{2} \cdot \vec{u}_{2}=(-1)^{2}+2^{2}+1^{2}=6
$$

$$
\vec{u}_{3} \cdot \vec{u}_{3}=(-1)^{2}+(-4)^{2}+7^{2}
$$

$$
=66
$$

$$
\begin{aligned}
\vec{y}_{y} & =\frac{-3}{11} \vec{u}_{1}+\frac{8}{6} \vec{u}_{2}+\frac{-10}{66} \vec{u}_{3} \\
& =\frac{-3}{11} \vec{u}_{1}+\frac{4}{3} \vec{u}_{2}-\frac{5}{33} \vec{u}_{3}
\end{aligned}
$$

Projection

Given a nonzero vector u, suppose we wish to decompose another nonzero vector \mathbf{y} into a sum of the form

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

in such a way that $\hat{\mathbf{y}}$ is parallel to \mathbf{u} and \mathbf{z} is perpendicular to \mathbf{u}.

Projection
Since $\hat{\mathbf{y}}$ is parallel to \mathbf{u}, there is a scalar α such that

$$
\hat{\mathbf{y}}=\alpha \mathbf{u} .
$$

Find a formula for this scalar.
Assume $\hat{y}=\hat{y}+z$ when $\hat{y}=\alpha \vec{u}$ and $\vec{z} \perp \vec{u}$
set $\vec{y}=\hat{y}+\vec{z}=\alpha \vec{u}+\vec{z}$. Dot w) \vec{u}.

$$
\begin{gathered}
\vec{u} \cdot \vec{y}=\vec{u} \cdot(\alpha \vec{u}+\vec{z})=\alpha \vec{u} \cdot \vec{u}+\vec{u} \cdot \vec{z} \\
\vec{u} \cdot \vec{y}=\alpha \vec{u} \cdot \vec{u} \quad \text { since } \vec{u} \cdot \vec{u} \neq 0 \\
\alpha=\frac{\vec{u} \cdot \vec{y}}{\vec{u} \cdot \vec{u}}=\frac{\vec{u} \cdot \vec{y}}{\|\vec{u}\|^{2}} .
\end{gathered}
$$

$$
\hat{y}=\left(\frac{\vec{u} \cdot \vec{y}}{\|\vec{u}\|^{2}}\right) \vec{u}
$$

Projection onto the subspace $L=\operatorname{Span}\{\mathbf{u}\}$

Projection Notation

We'll use the following notation for the project of a vector \mathbf{y} onto the line $L=\operatorname{Span}\{\mathbf{u}\}$ for nonzero vector \mathbf{u}.

$$
\hat{\mathbf{y}}=\operatorname{proj}_{L} \mathbf{y}=\left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u} .
$$

This may also be written as projuy.

This is read as "the projection of \mathbf{y} onto \mathbf{u} (or onto L)."

Example
Let $\mathbf{y}=\left[\begin{array}{l}7 \\ 6\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$. Write $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$ where $\hat{\mathbf{y}}$ is in $\operatorname{Span}\{\mathbf{u}\}$ and \mathbf{z} is orthogonal to \mathbf{u}.

$$
\begin{gathered}
\hat{y}=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} \quad \vec{y} \cdot \vec{u}=7(u)+6(z)=28+12=40 \\
\hat{u} \cdot \vec{u}=4^{2}+2^{2}=20 \\
\hat{y}=\frac{40}{20}\left[\begin{array}{l}
4 \\
z
\end{array}\right]=2\left[\begin{array}{l}
4 \\
z
\end{array}\right]=\left[\begin{array}{l}
8 \\
4
\end{array}\right] \\
\vec{z}=\vec{y}-\hat{y}=\left[\begin{array}{l}
7 \\
6
\end{array}\right]-\left[\begin{array}{l}
8 \\
4
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \\
\vec{y}=\left[\begin{array}{l}
0 \\
4
\end{array}\right]+\left[\begin{array}{c}
-1 \\
z
\end{array}\right] \\
\hat{y} \quad \vec{z}
\end{gathered}
$$

Nate that $\vec{z} \cdot \vec{u}=\left[\begin{array}{c}-1 \\ 2\end{array}\right] \cdot\left[\begin{array}{l}4 \\ z\end{array}\right]=-4+4=0$

Example Continued...
Determine the distance between the point $(7,6)$ and the line Span $\{\mathbf{u}\}$.
The distance is $\|\vec{z}\|$.

$$
\begin{aligned}
\operatorname{dist}\left(L, \dot{v}_{2}\right) & =\left\|\left[\begin{array}{c}
-1 \\
2
\end{array}\right]\right\| \\
& =\sqrt{(-1)^{2}+2^{2}}=\sqrt{5}
\end{aligned}
$$

Distance between point and line

Figure: The distance between the point $(7,6)$ and the line $\operatorname{Span}\{\mathbf{u}\}$ is the norm of \mathbf{z}.

Orthonormal Sets

Definition:

A set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is called an orthonormal set if it is an orthogonal set of unit vectors.

Definition:

An orthonormal basis of a subspace W of \mathbb{R}^{n} is a basis that is also an orthonormal set.

Remark: So an orthonormal set (or basis) is an orthogonal set (or basis) with the extra condition that each vector has norm $\sqrt{\mathbf{u}_{i} \cdot \mathbf{u}_{i}}=1$.

Remark: Any orthogonal set can be normalized to obtain an orthonormal one.

