April 18 Math 3260 sec. 51 Spring 2022

Section 5.3: Diagonalization

Defintion: An $n \times n$ matrix A is called diagonalizable if it is similar to a diagonal matrix D. That is, provided there exists a nonsingular matrix P such that $D=P^{-1} A P$-i.e. $A=P D P^{-1}$.

Theorem: The $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, the matrix P is the matrix whose columns are the n linearly independent eigenvectors of A.

Remark: The diagonal matrix D will have the eigenvalues of A on its main diagonal. The order will correspond to the order in which the eigenvectors are used to construct the matrix P.

Example

Diagonalize the matrix A if possible. $A=\left[\begin{array}{rrr}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$
The eigenvalues were $\lambda_{1}=1$ and $\lambda_{2}=-2$. We found three linearly independent eigenvectors, so A is diagonalizable. We found a P and D

$$
P=\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right] .
$$

Example
Diagonalize the matrix A if possible. $A=\left[\begin{array}{rrr}2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1\end{array}\right]$. (With a little effort, it can be shown that the characteristic polynomial of A is $(1-\lambda)(2+\lambda)^{2}$.)

The characteristic equation is

$$
(1-\lambda)(2+\lambda)^{2}=0
$$

the eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=-2$.
Find the eigenvectors
for $\lambda_{1}=1 \quad A-1 I=\left[\begin{array}{ccc}1 & 4 & 3 \\ -4 & -7 & -3 \\ 3 & 3 & 0\end{array}\right] \xrightarrow{\operatorname{rref}}\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$

An eigenvector looks like

$$
\vec{V}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& x_{1}=x_{3} \\
& x_{2}=-x_{3} \\
& x_{3} \text { - free }
\end{aligned}
$$

For $\lambda_{2}=-2$

$$
\begin{array}{r}
\text { For } \lambda_{2}=-2 \\
A-(-2) I=\left[\begin{array}{ccc}
4 & 4 & 3 \\
-4 & -4 & -3 \\
3 & 3 & 3
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
\begin{array}{l}
x_{1}=-x_{2} \\
x_{2}-\text { free } \\
x_{3}=0
\end{array}
\end{array}
$$

The algebraic multiplicity of $\lambda_{2}=-2$ is 2, but the geometric nuet-plicity is only 1.

A doesn't have 3 lin. independent eigenvectors. $\Rightarrow A$ is not diagonalizable.

Theorem (a second on diagonalizability)

Recall: (sec. 5.1) If λ_{1} and λ_{2} are distinct eigenvalues of a matrix, the corresponding eigenvectors are linearly independent.

Theorem: If the $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Note: This is a sufficiency condition, not a necessity condition. We've already seen a matrix with a repeated eigenvalue that was diagonalizable.

Theorem (a third on diagonalizability)

Theorem: Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$.
(a) The geometric multiplicity (dimension of the eigenspace) of λ_{k} is less than or equal to the algebraic multiplicity of λ_{k}.
(b) The matrix is diagonalizable if and only if the sum of the geometric multiplicities is $n-i . e$. the sum of dimensions of all eigenspaces is n so that there are n linearly independent eigenvectors.
(c) If A is diagonalizable, and \mathcal{B}_{k} is a basis for the eigenspace for λ_{k}, then the collection (union) of bases $\mathcal{B}_{1}, \ldots, \mathcal{B}_{p}$ is a basis for \mathbb{R}^{n}.

Remark: The union of the bases referred to in part (c) is called an eigenvector basis for \mathbb{R}^{n}. (Of course, one would need to reference the specific matrix.)

Example
Diagonalize the matrix if possible. $A=\left[\begin{array}{cc}5 & -6 \\ 4 & -5\end{array}\right]$.
(1) Find eisenvaluer.

$$
\begin{aligned}
d t(A \cdot \lambda I) & =d t\left[\begin{array}{cc}
5-\lambda & -6 \\
4 & -5-\lambda
\end{array}\right] \\
& =(5-\lambda)(-5-\lambda)+24 \\
& =\lambda^{2}-25+24=\lambda^{2}-1 \\
0=\lambda^{2}-1 & \Rightarrow \lambda_{1}=1, \lambda_{2}=-1
\end{aligned}
$$

(2) Find eigenvectors

$$
\begin{aligned}
& \lambda_{1}=1 \quad A \cdot 1 I=\left[\begin{array}{cc}
4 & -6 \\
4 & -6
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{cc}
1 & -3 / 2 \\
0 & 0
\end{array}\right] \begin{array}{c}
x_{1}=\frac{3}{2} x_{2} \\
x_{2}-\operatorname{dres}
\end{array} \\
& \vec{x}=x_{2}\left[\begin{array}{c}
3 / 2 \\
1
\end{array}\right] \quad \text { set } \vec{v}_{1}=\left[\begin{array}{l}
3 \\
2
\end{array}\right] \text { (tale } x_{2}=2 \text { case) } \\
& \lambda_{2}=-1 \quad A-(-1) I=\left[\begin{array}{ll}
6 & -6 \\
4 & -4
\end{array}\right] \xrightarrow{\operatorname{rret}}\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] x_{1}=x_{2} \\
& x_{2}-\operatorname{duc} \\
& \vec{x}=x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { sit } \vec{v}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad\left(\text { letting } x_{2}=1\right)
\end{aligned}
$$

$$
\text { (3) Construct } P: P=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]=\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right]
$$

(4) Get D : $\quad \operatorname{det}(P)=3-2=1$

$$
\begin{aligned}
\mathbb{P}^{-1} & =\left[\begin{array}{cc}
1 & -1 \\
-2 & 3
\end{array}\right] \\
D=P^{-1} A P & =\left[\begin{array}{cc}
1 & -1 \\
-2 & 3
\end{array}\right]\left[\begin{array}{ll}
5 & -6 \\
4 & -5
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & -1 \\
-2 & 3
\end{array}\right]\left[\begin{array}{ll}
3 & -1 \\
2 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
& =\left[\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
\end{aligned}
$$

Example Continued...
Find A^{8} where $A=\left[\begin{array}{ll}5 & -6 \\ 4 & -5\end{array}\right]$.

* If A and B are similar, then A^{8} and B^{8} are similar wi the some similarity transformation matrix P.
we know that $D=P^{-1} A P$ where

$$
\begin{aligned}
& D=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \text { and } P=\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right] \\
& D=P^{\prime \prime} A P \Rightarrow A=P D P^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& D^{8}=\left[\begin{array}{cc}
18 & 0 \\
0 & (-1)^{8}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& A^{8}=P^{-1} D^{8} P=P^{-1} I P=P^{-1} P=I
\end{aligned}
$$

add power of A ane A
$A^{2 w+1}=A$ for natural number k

$$
A^{2 k}=I
$$

Section 6.1: Inner Product, Length, and Orthogonality

Recall: A vector \mathbf{u} in \mathbb{R}^{n} can be considered an $n \times 1$ matrix. It follows that \mathbf{u}^{T} is a $1 \times n$ matrix.

$$
\text { If } \mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right], \quad \text { then } \quad \mathbf{u}^{T}=\left[\begin{array}{lll}
u_{1} & u_{2} \cdots u_{n}
\end{array}\right] \text {. }
$$

Definition of an Inner Product

Definition: For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} we define the inner product of \mathbf{u} and \mathbf{v} (also called the dot product) by the matrix product

Remark: Note that this product produces a scalar. It is sometimes called a scalar product.

Theorem (Properties of the Inner Product)

We'll use the notations $\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{\top} \mathbf{v}$ interchangeably.

Theorem: For \mathbf{u}, \mathbf{v} and \mathbf{w} in \mathbb{R}^{n} and real scalar c
(a) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
(b) $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
(c) $c(\mathbf{u} \cdot \mathbf{v})=(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})$
(d) $\mathbf{u} \cdot \mathbf{u} \geq 0$, with $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$.

The Norm

The property $\mathbf{u} \cdot \mathbf{u} \geq 0$ means that $\sqrt{\mathbf{u} \cdot \mathbf{u}}$ always exists as a real number.

Definition: The norm of the vector \mathbf{v} in \mathbb{R}^{n} is the nonnegative number, denoted $\|\mathbf{v}\|$, defined by

$$
\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

where $v_{1}, v_{2}, \ldots, v_{n}$ are the components of \mathbf{v}.

Remark: As a directed line segment, the norm is the same as the length.

Norm and Length

Figure: In \mathbb{R}^{2} or \mathbb{R}^{3}, the norm corresponds to the classic geometric property of length.

Unit Vectors and Normalizing

Theorem: For vector \mathbf{v} in \mathbb{R}^{n} and scalar c

$$
\|c \mathbf{v}\|=|c|\|\mathbf{v}\|
$$

Example: If \mathbf{v} is a vector in \mathbb{R}^{4} with norm $\|\mathbf{v}\|=3$, then $-4 \mathbf{v}$ is a vector in \mathbb{R}^{4} with norm

$$
\|-4 \mathbf{v}\|=|-4|\|\mathbf{v}\|=4 \cdot 3=12
$$

Unit Vectors and Normalizing

Definition: A vector \mathbf{u} in \mathbb{R}^{n} for which $\|\mathbf{u}\|=1$ is called a unit vector.

Remark: Given any nonzero vector \mathbf{v} in \mathbb{R}^{n}, we can obtain a unit vector \mathbf{u} in the same direction as \mathbf{v}

$$
\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|} .
$$

This process, of dividing out the norm, is called normalizing the vector V.

Example
Show that $\mathbf{v} /\|\mathbf{v}\|$ is a unit vector.

$$
\text { Recall } \frac{\vec{v}}{\|\vec{v}\|}=\frac{1}{\|\vec{v}\|} \vec{v} \text { ard } \quad \mid \vec{v} \|>0
$$

Finding the norm

$$
\begin{aligned}
\left\|\frac{\vec{v}}{\|\vec{v}\|}\right\| & =\left\|\frac{1}{\|\vec{v}\|} \vec{v}\right\|=\left|\frac{1}{\|\vec{v}\|}\right|\|\vec{v}\| \\
& =\frac{1}{n \vec{v} \|}\|\vec{v}\|=1
\end{aligned}
$$

Example
Find a unit vector in the direction of $\mathbf{v}=(1,3,2)$.

$$
\|\vec{v}\|=\sqrt{1^{2}+3^{2}+2^{2}}=\sqrt{14}
$$

Letting $\vec{u}=\frac{1}{\|\vec{v}\|} \vec{v}$

$$
\vec{u}=\frac{1}{\sqrt{14}}\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{\sqrt{14}} \\
\frac{3}{\sqrt{14}} \\
\frac{2}{\sqrt{14}}
\end{array}\right]
$$

Distance in \mathbb{R}^{n}

Definition: For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, the distance between \mathbf{u} and \mathbf{v} is denoted by

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})
$$

and is defined by

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\| .
$$

Remark: This is the same as the traditional formula for distance used in \mathbb{R}^{2} between points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$,

$$
d=\sqrt{\left(y_{1}-y_{0}\right)^{2}+\left(x_{1}-x_{0}\right)^{2}}
$$

