April 18 Math 3260 sec. 52 Spring 2022

Section 5.3: Diagonalization

Definition: An $n \times n$ matrix A is called **diagonalizable** if it is similar to a diagonal matrix D. That is, provided there exists a nonsingular matrix P such that $D = P^{-1}AP$ —i.e. $A = PDP^{-1}$.

Theorem: The $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, the matrix P is the matrix whose columns are the n linearly independent eigenvectors of A.

Remark: The diagonal matrix *D* will have the eigenvalues of *A* on its main diagonal. The order will correspond to the order in which the eigenvectors are used to construct the matrix *P*.

Diagonalize the matrix A if possible.
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

The eigenvalues were $\lambda_1 = 1$ and $\lambda_2 = -2$. We found three linearly independent eigenvectors, so *A* is diagonalizable. We found a *P* and *D*

$$P = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \text{ and } D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}.$$

イロト イポト イヨト イヨト

April 18, 2022

Diagonalize the matrix A if possible. $A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$. (With a little effort, it can be shown that the characteristic polynomial of A is $(1-\lambda)(2+\lambda)^2$.)

The characteristic equation is

$$(1-\chi)(z+\chi)^{2} = 0$$
A has two eigenvolves $\lambda_{1} = 1$ and $\lambda_{2} = -2$.
Find eigenvectors:
For $\lambda_{1} = 1$ A-1I = $\begin{pmatrix} 1 & y & 3 \\ -y & -7 & -3 \\ 3 & 3 & 0 \end{pmatrix} \xrightarrow{\operatorname{rret}} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
April 18.2022 3/56

 $\chi_1 \in \chi_3$ Eigenvectors look like $X_7 = -X_3$ $\vec{\chi} = \chi^3 \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$ X3 - free $L_{A} = \vec{v}_{i} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$

 $\begin{array}{ccc} F_{\bullet-} & \lambda_z = -2 \\ A & -(-z) \boxed{\Gamma} & = \begin{pmatrix} 4 & 4 & 3 \\ -4 & -4 & -3 \\ 3 & 3 & 3 \end{pmatrix} \xrightarrow{\operatorname{cref}} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

 $X_{1} = -X_{2} \qquad \text{Elgen Vectors.} \\ X_{2} - free \\ X_{3} = 0 \qquad \qquad X = X_{2} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$

April 18, 2022 4/56

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

The algebraic multiplicity of $\lambda_z=2$ is two, but the geometric multiplicity is only one.

A is not diagonalizable.

< □ > < @ > < E > < E > E のへで April 18, 2022 5/56 Theorem (a second on diagonalizability)

Recall: (sec. 5.1) If λ_1 and λ_2 are distinct eigenvalues of a matrix, the corresponding eigenvectors are linearly independent.

Theorem: If the $n \times n$ matrix *A* has *n* distinct eigenvalues, then *A* is diagonalizable.

Note: This is a *sufficiency* condition, not a *necessity* condition. We've already seen a matrix with a repeated eigenvalue that was diagonalizable.

イロト 不得 トイヨト イヨト ヨー ろくの

Theorem (a third on diagonalizability)

Theorem: Let *A* be an $n \times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_p$.

- (a) The geometric multiplicity (dimension of the eigenspace) of λ_k is less than or equal to the algebraic multiplicity of λ_k .
- (b) The matrix is diagonalizable if and only if the sum of the geometric multiplicities is n—i.e. the sum of dimensions of all eigenspaces is n so that there are n linearly independent eigenvectors.
- (c) If *A* is diagonalizable, and \mathcal{B}_k is a basis for the eigenspace for λ_k , then the collection (union) of bases $\mathcal{B}_1, \ldots, \mathcal{B}_p$ is a basis for \mathbb{R}^n .

Remark: The union of the bases referred to in part (c) is called an **eigenvector basis** for \mathbb{R}^n . (Of course, one would need to reference the specific matrix.)

Diagonalize the matrix if possible. $A = \begin{bmatrix} 5 & -6 \\ 4 & -5 \end{bmatrix}$.

O Find the eigenvalues $dut(A - \lambda I) = det \begin{pmatrix} S - \lambda & -6 \\ 9 & -S - \lambda \end{pmatrix}$ $= (s - \lambda)(-s - \lambda) + 24$ $= \lambda^2 - 25 + 24 = \lambda^2 - 1$ $O = \lambda^2 - 1 \implies \lambda_1 = 1 \text{ or } \lambda_2 = -1$

- 31

10/56

April 18, 2022

@ Find ligenvectors

$$\lambda_{1} = 1 \qquad A - 1I = \begin{bmatrix} 4 & -6 \\ 4 & -6 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & -3h \\ 0 & 0 \end{bmatrix} X_{1} = \frac{3}{2}X_{2}$$

$$X_{2} - \text{free}$$

Eigenvectors

$$\vec{X} = X_2 \begin{bmatrix} 3/2 \\ 1 \end{bmatrix}$$

Let $\vec{V}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ (eigenvector $w \mid X_2 = 2$)

For
$$\lambda_2 = -1$$

 $A - (-1)\overline{L} = \begin{bmatrix} 6 & -6 \\ 4 & -4 \end{bmatrix} \xrightarrow{\text{ref}} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \chi_1 = \chi_2$
Eigenvectors $\vec{\chi} = \chi_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ set $\vec{V}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

April 18, 2022 11/56

(3) For motive P

$$P = \begin{bmatrix} \vec{v}, \vec{v}_{z} \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$
(3) Find $D = \vec{P} A P$, $A = \begin{bmatrix} s & -6 \\ 4 & -s \end{bmatrix} dut(P) = 3 - 2 = 1$

$$\mathbf{P}' = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$$

 $D = P'AP = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 5 & -6 \\ -4 & -5 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 2 & -1 \end{bmatrix}$

April 18, 2022 12/56

イロト 不得 トイヨト イヨト 二日

$$= \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix}$$

Example Continued... Find A^8 where $A = \begin{bmatrix} 5 & -6 \\ 4 & -5 \end{bmatrix}$.

* Recall : If A and B are similar motivices, then A^{lk} and B^{lk} are similar will the same similarity transformation materix P.

We can use that

$$D^{8} = P^{1}A^{8}P \implies A^{8} = PD^{8}P^{1}$$

$$D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, D^{8} = \begin{bmatrix} 1^{8} & 0 \\ 0 & (-1)^{8} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

April 18, 2022 14/56

 $A^{\mathbf{g}} = P^{\mathbf{y}} D^{\mathbf{g}} P = P^{\mathbf{y}} I P = P^{\mathbf{y}} P$ = T

Turns out $A^{2k} = I$ for noticel number k $A^{2k+1} = A$ for " " "

> < □ > < □ > < ■ > < 重 > < 重 > 重 のへで April 18, 2022 15/56

Section 6.1: Inner Product, Length, and Orthogonality

Recall: A vector **u** in \mathbb{R}^n can be considered an $n \times 1$ matrix. It follows that \mathbf{u}^T is a $1 \times n$ matrix.

If
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
, then $\mathbf{u}^T = [u_1 \ u_2 \ \cdots \ u_n]$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

April 18, 2022

Definition of an Inner Product

Definition: For vectors **u** and **v** in \mathbb{R}^n we define the **inner product** of **u** and **v** (also called the **dot product**) by the **matrix product**

$$\mathbf{u}^{\mathsf{T}}\mathbf{v} = \begin{bmatrix} u_1 \ u_2 \ \cdots \ u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n.$$

Remark: Note that this product produces a scalar. It is sometimes called a *scalar product*.

April 18, 2022

Theorem (Properties of the Inner Product)

We'll use the notations $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$ interchangeably.

Theorem: For **u**, **v** and **w** in \mathbb{R}^n and real scalar *c*

(a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

(b) $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$

(c) $c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$

(d) $\mathbf{u} \cdot \mathbf{u} \ge 0$, with $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$.

April 18, 2022 18/56

The Norm

The property $\mathbf{u} \cdot \mathbf{u} > 0$ means that $\sqrt{\mathbf{u} \cdot \mathbf{u}}$ always exists as a real number.

Definition: The **norm** of the vector **v** in \mathbb{R}^n is the nonnegative number, denoted ||**v**||, defined by

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

where v_1, v_2, \ldots, v_n are the components of **v**.

Remark: As a directed line segment, the norm is the same as the length.

> April 18, 2022

Norm and Length

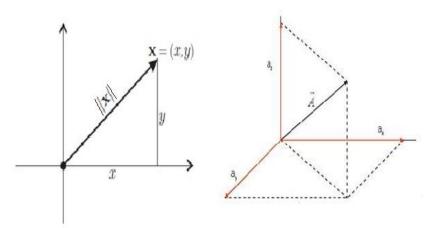


Figure: In \mathbb{R}^2 or \mathbb{R}^3 , the norm corresponds to the classic geometric property of length.

Unit Vectors and Normalizing

Theorem: For vector **v** in \mathbb{R}^n and scalar *c*

 $\|\mathbf{C}\mathbf{V}\| = |\mathbf{C}|\|\mathbf{V}\|.$

Example: If **v** is a vector in \mathbb{R}^4 with norm $\|\mathbf{v}\| = 3$, then $-4\mathbf{v}$ is a vector in \mathbb{R}^4 with norm

$$\|-4\mathbf{v}\| = |-4| \|\mathbf{v}\| = 4 \cdot 3 = 12$$

April 18, 2022 21/56

イロト イポト イヨト イヨト

Unit Vectors and Normalizing

Definition: A vector **u** in \mathbb{R}^n for which $||\mathbf{u}|| = 1$ is called a **unit vector**.

Remark: Given any nonzero vector **v** in \mathbb{R}^n , we can obtain a unit vector **u** in the same direction as **v**

$$\mathsf{u} = \frac{\mathsf{v}}{\|\mathsf{v}\|}.$$

This process, of dividing out the norm, is called **normalizing** the vector $\boldsymbol{v}.$

April 18, 2022

Show that $\mathbf{v}/\|\mathbf{v}\|$ is a unit vector.

 $\begin{aligned} N_{obe} \quad \frac{\vec{v}}{||\vec{v}||} &= \frac{1}{||\vec{v}||} \vec{v} \qquad \text{and} \quad ||\vec{v}|| > 0 \\ &\| \frac{\vec{v}}{||\vec{v}||} &\| \frac{1}{||\vec{v}||} \quad \vec{v} &\| \frac{1}{||\vec{v}||} \quad ||\vec{v}|| \\ &\| \frac{\vec{v}}{||\vec{v}||} &\| \frac{1}{||\vec{v}||} \quad \vec{v} &\| \frac{1}{||\vec{v}||} \quad ||\vec{v}|| \\ &= \frac{1}{||\vec{v}||} \quad ||\vec{v}|| \quad = 1 \end{aligned}$

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ かへぐ April 18, 2022 23/56

Find a unit vector in the direction of $\mathbf{v} = (1, 3, 2)$.

Let
$$\vec{u} = \frac{\vec{v}}{\|\vec{v}\|}$$

 $\|\vec{v}\| = \sqrt{1^2 + 3^2 + 2^2} = \sqrt{14}$
 $\vec{u} = \frac{1}{\sqrt{14}} \begin{pmatrix} 1\\ 3\\ 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{14}}\\ \frac{2}{\sqrt{14}}\\ \frac{2}{\sqrt{14}} \end{pmatrix}$

Distance in \mathbb{R}^n

Definition: For vectors **u** and **v** in \mathbb{R}^n , the **distance between u and v** is denoted by

 $dist(\mathbf{u}, \mathbf{v}),$

and is defined by

$$\mathsf{dist}(\mathbf{u},\mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|.$$

Remark: This is the same as the traditional formula for distance used in \mathbb{R}^2 between points (x_0 , y_0) and (x_1 , y_1),

$$d = \sqrt{(y_1 - y_0)^2 + (x_1 - x_0)^2}.$$

April 18, 2022