April 1 Math 3260 sec. 52 Spring 2024 Section 4.5: Dimension of a Vector Space

Theorem:

If a vector space *V* has a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, then any set of vectors in *V* containing *more than n vectors* is linearly dependent.

This extends our result in \mathbb{R}^n that said that a set with more vectors than entries in each vector had to be linearly dependent.

For example,

$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\10\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\4 \end{bmatrix}, \begin{bmatrix} 3\\6\\8 \end{bmatrix} \right\}$$

is linearly dependent because there are 4 vectors from \mathbb{R}^3_+ .

Example

Recall that a basis for \mathbb{P}_3 is $\{1, t, t^2, t^3\}$.

Is the set below linearly dependent or linearly independent?

$$\{1 + t, 2t - 3t^3, 1 + t + t^2, 1 + t + t^2 + t^3, 2 - t + 2t^3\}$$

This set has 5 vectors. A basis has
Y vectors. Since 5 > 4, this set
is linearly dependent.

All Bases are the same Size

Our theorem gives the immediate corollary:

Corollary:

If vector space *V* has a basis $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$, then every basis of *V* consist of exactly *n* vectors.

Remark: This makes sense. If one basis had more vectors than another basis, it couldn't be linearly independent.

4 D K 4 B K 4 B K 4

Dimension Consider a vector space *V*.

Definition:

If V is spanned by a finite set, then V is called **finite dimensional**. In this case, the dimension of V

dim V = the number of vectors in any basis of V.

The dimension of the vector space $\{0\}$ containing only the zero vector is defined to be zero—i.e.

 $\dim\{\mathbf{0}\}=\mathbf{0}.$

If V is not spanned by a finite set^a, then V is said to be **infinite** dimensional.

 ${}^{a}C^{0}(\mathbb{R})$ is an example of an infinite dimensional vector space.

Examples (a) Determine dim (\mathbb{R}^n) . = \curvearrowleft

(b) Determine dim Col(A) where $A = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 0 & -1 \end{bmatrix}$.

÷

Some Geometry in \mathbb{R}^3

We can describe all of the subspaces of \mathbb{R}^3 geometrically. The subspace(s) of dimension

- (a) zero: is just the origin (one point), (0, 0, 0).
- (b) one: are lines through the origin. Span{u} where u is not the zero vector.
- (c) two: are planes that contain the origin and two other, noncolinear points. Span{u, v} with {u, v} linearly independent.
- (d) three: is all of \mathbb{R}^3 .

イロト イポト イヨト イヨト

Subspaces and Dimension

Theorem:

Let H be a subspace of a finite dimensional vector space V. Then H is finite dimensional and

 $\dim H \leq \dim V.$

Moreover, any linearly independent subset of H can be expanded if needed to form a basis for H.

Remark: We said before that we can take a spanning set and remove extra vectors to get a basis. This follow up statement says if we start with a linearly independent set, we can add to it as needed to get a basis.

Subspaces and Dimension

Theorem:

Let *V* be a vector space with dim V = p where $p \ge 1$. Any linearly independent set in *V* containing exactly *p* vectors is a basis for *V*. Similarly, any spanning set consisting of exactly *p* vectors in *V* is necessarily a basis for *V*.

Remark: this connects two properties **spanning** and **linear independence**. If dim V = p and a set contains p vectors then

- ► linear independence ⇒ spanning
- spanning \implies linear independence

Again, this is **IF** the number of vectors matches the dimension of the vector space.

Column and Null Spaces

Theorem:

Let *A* be an $m \times n$ matrix. Then

dim Nul A = the number of free variables in the equation $A\mathbf{x} = \mathbf{0}$,

and

dim Col A = the number of pivot positions in A.

< □ > < @ > < E > < E > E → Q () March 27, 2024 9/20

Example

A matrix *A* is show along with its rref. Find the dimensions of the null space and column space of *A*.

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ -3 & 1 & -7 & -1 \\ 3 & 0 & 6 & 1 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

March 27, 2024 10/20

イロト イポト イヨト イヨト

Example

A matrix A along with its rref is shown.

$$A = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) Find a basis for Row A and state dim Row A.

A basis for
$$\operatorname{Row}(A)$$
 is
 $\left\{
\begin{bmatrix}
1 \\
0 \\
1 \\
0 \\
1
\end{bmatrix},
\begin{bmatrix}
0 \\
-2 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
-3
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
-3
\end{bmatrix},$

э

dim (for A) = 3.

Example continued ...

$$A = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(b) Find a basis for Col A and state dim Col A.

From the met, Columns 1,2,22 4 are pNot columns. A basis Col (A) is

- -

$$\left\{ \begin{bmatrix} -z \\ 1 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} -s \\ 3 \\ 1 \\ 7 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 7 \\ 5 \end{bmatrix} \right\} \quad dim\left(C_{o} \downarrow A\right) = 3$$

March 27, 2024 12/20

Example continued ...

$$A = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(c) Find a basis for Nul A and state dim Nul A. then it is in R Az=0 if. Note that $\vec{X} = \chi_{2} \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \chi_{3} \begin{bmatrix} -1 \\ -3 \\ 0 \\ 5 \\ 1 \end{bmatrix}$ $\chi_{1} = -\chi_{3} - \chi_{5}$ $X_{1} = ZX_{3} - 3X_{5}$ X3 is free $\chi_{L} = S\chi_{5}$ Xe is free < ロ > < 同 > < 回 > < 回 >

March 27, 2024

13/20

A basis for Nul (A) is $\left\{\begin{array}{c}
-1 \\
2 \\
1 \\
0 \\
0
\end{array}\right\}, \left\{\begin{array}{c}
-1 \\
-3 \\
0 \\
5 \\
1
\end{array}\right\}$ dim (Nul (A)) = 2

э

・ロト ・四ト ・ヨト ・ヨト

Remarks

- Row operations preserve row space, but change linear dependence relations of rows.
- Row operations change column space, but preserve linear dependence relations of columns.
- Another way to obtain a basis for Row A is to take the transpose A^T and do row operations. We have the following relationships:

Row
$$A = \text{Col } A^T$$
 and $\text{Col } A = \text{Row } A^T$

March 27, 2024

15/20

Rank & Nullity

Definition:

The **rank** of a matrix A, denoted rank(A), is the dimension of the column space of A.

Definition:

The **nullity** of a matrix *A* is the dimension of the null space.

Remark: Since the dimension of the column space is the number of pivot positions, the dimensions of the column and row spaces are the same. That is,

 $rank(A) = \dim Col(A) = \dim Row(A).$

March 27, 2024

16/20

The Rank-Nullity Theorem

Theorem:

For $m \times n$ matrix A, dim Col(A) = dim Row(A) = rank(A). Moreover

 $\operatorname{rank} A + \operatorname{dim} \operatorname{Nul} A = n.$

イロト イポト イヨト イヨト

3

17/20

March 27, 2024

The Rank-Nullity Theorem

Theorem:

For $m \times n$ matrix A, dim Col(A) = dim Row(A) = rank(A). Moreover

 $\operatorname{rank} A + \operatorname{dim} \operatorname{Nul} A = n.$

Note: This theorem states the rather obvious fact that

 $\left\{\begin{array}{c} number of \\ pivot columns \end{array}\right\} + \left\{\begin{array}{c} number of \\ non-pivot columns \end{array}\right\} = \left\{\begin{array}{c} total number \\ of columns \end{array}\right\}.$

March 27, 2024

17/20

(1) *A* is a 5×4 matrix and rank(*A*) = 4. What is dim Nul *A*?

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

Examples

-

(2) Suppose A is 7×5 and dim Col A = 2. Determine

1. the nullity of A n=5 as rank (A) = din (GQA) = 2

2. the rank of A^T rank $(A^T) = \dim(Gol A^T) = \dim(Rous A)$ = $\dim(Gol A) = 2$

$$ronk(A^{T}) = 2$$

3. the nullity of A^T for A^T , the "n" is \mathcal{F} .

2+ nullity = 7 = nullity of 5.

March 27, 2024 19/20

Addendum to Invertible Matrix Theorem

Theorem:

Let *A* be an $n \times n$ matrix. The following are equivalent to the statement that *A* is invertible.

March 27, 2024

20/20

(m) The columns of A form a basis for \mathbb{R}^n

(n) Col
$$A = \mathbb{R}^n$$

(o) dim Col
$$A = n$$

(p) rank
$$A = n$$

(q) Nul
$$A = \{0\}$$

(r) dim Nul A = 0