April 1 Math 3260 sec. 52 Spring 2024

Section 4.5: Dimension of a Vector Space

Theorem:

If a vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then any set of vectors in V containing more than n vectors is linearly dependent.

This extends our result in \mathbb{R}^{n} that said that a set with more vectors than entries in each vector had to be linearly dependent.

For example,

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{r}
2 \\
10 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
8
\end{array}\right]\right\}
$$

is linearly dependent because there are 4 vectors from \mathbb{R}^{3}.

Example
Recall that a basis for \mathbb{P}_{3} is $\left\{1, t, t^{2}, t^{3}\right\}$.
Is the set below linearly dependent or linearly independent?

$$
\left\{1+t, 2 t-3 t^{3}, 1+t+t^{2}, 1+t+t^{2}+t^{3}, 2-t+2 t^{3}\right\}
$$

This set has 5 vectors. A basis has 4 vectors. Since $5>4$, this set is linearly dependent.

All Bases are the same Size

Our theorem gives the immediate corollary:

Corollary:

If vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then every basis of V consist of exactly n vectors.

Remark: This makes sense. If one basis had more vectors than another basis, it couldn't be linearly independent.

Dimension

Consider a vector space V.

Definition:

If V is spanned by a finite set, then V is called finite dimensional. In this case, the dimension of V

$$
\operatorname{dim} V=\text { the number of vectors in any basis of } V \text {. }
$$

The dimension of the vector space $\{\mathbf{0}\}$ containing only the zero vector is defined to be zero-i.e.

$$
\operatorname{dim}\{\mathbf{0}\}=0 .
$$

If V is not spanned by a finite set ${ }^{2}$, then V is said to be infinite dimensional.
${ }^{a} C^{0}(\mathbb{R})$ is an example of an infinite dimensional vector space.

Examples
(a) Determine $\operatorname{dim}\left(\mathbb{R}^{n}\right) .=n$

The standard basis has n vectors in it, $\vec{e}_{1}, \dot{e}_{2}, \ldots, \vec{e}_{n}$.
(b) Determine $\operatorname{dim} \operatorname{Col}(A)$ where $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 0 & 0 & -1\end{array}\right]$.
A is an ref. wi two pisot columns.
Any basis will hove two vectors

$$
\text { so } \quad \operatorname{dim}(\operatorname{col}(A))=2
$$

Some Geometry in \mathbb{R}^{3}

We can describe all of the subspaces of \mathbb{R}^{3} geometrically. The subspace(s) of dimension
(a) zero: is just the origin (one point), ($0,0,0$).
(b) one: are lines through the origin. Span $\{\mathbf{u}\}$ where \mathbf{u} is not the zero vector.
(c) two: are planes that contain the origin and two other, noncolinear points. Span $\{\mathbf{u}, \mathbf{v}\}$ with $\{\mathbf{u}, \mathbf{v}\}$ linearly independent.
(d) three: is all of \mathbb{R}^{3}.

Subspaces and Dimension

Theorem:

Let H be a subspace of a finite dimensional vector space V. Then H is finite dimensional and

$$
\operatorname{dim} H \leq \operatorname{dim} V
$$

Moreover, any linearly independent subset of H can be expanded if needed to form a basis for H.

Remark: We said before that we can take a spanning set and remove extra vectors to get a basis. This follow up statement says if we start with a linearly independent set, we can add to it as needed to get a basis.

Subspaces and Dimension

Theorem:

Let V be a vector space with $\operatorname{dim} V=p$ where $p \geq 1$. Any linearly independent set in V containing exactly p vectors is a basis for V. Similarly, any spanning set consisting of exactly p vectors in V is necessarily a basis for V.

Remark: this connects two properties spanning and linear independence. If $\operatorname{dim} V=p$ and a set contains p vectors then

- linear independence \Longrightarrow spanning
- spanning \Longrightarrow linear independence

Again, this is IF the number of vectors matches the dimension of the vector space.

Column and Null Spaces

Theorem:

Let A be an $m \times n$ matrix. Then
$\operatorname{dim} \operatorname{Nul} A=$ the number of free variables in the equation $A \mathbf{x}=\mathbf{0}$,
and

$$
\operatorname{dim} \operatorname{Col} A=\text { the number of pivot positions in } A \text {. }
$$

Example
A matrix A is show along with its ref. Find the dimensions of the null space and column space of A.

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-3 & 1 & -7 & -1 \\
3 & 0 & 6 & 1
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

A has 3 pivot columns and one nonpivot column.

$$
\operatorname{dim}(\operatorname{col}(A))=3
$$

Then would be one free varable in $A \vec{x}=\overrightarrow{0}$ Hence $\operatorname{din}(\operatorname{Nul}(A))=1$.

Example

A matrix A along with its ref is shown.
$A=\left[\begin{array}{ccccc}-2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3\end{array}\right] \sim\left[\begin{array}{ccccc}1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(a) Find a basis for Row A and state $\operatorname{dim} \operatorname{Row} A$.

$$
\begin{aligned}
& \text { A basis for Row }(A) \text { is } \\
& \left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-2 \\
0 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
5
\end{array}\right]\right\} \cdot \operatorname{dim}(\operatorname{Row} A)=3 .
\end{aligned}
$$

Example continued ...

$$
A=\left[\begin{array}{ccccc}
-2 & -5 & 8 & 0 & -17 \\
1 & 3 & -5 & 1 & 5 \\
3 & 11 & -19 & 7 & 1 \\
1 & 7 & -13 & 5 & -3
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & -2 & 0 & 3 \\
0 & 0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(b) Find a basis for $\operatorname{Col} A$ and state $\operatorname{dim} \operatorname{Col} A$.

From the reft, columns 1,2, ad 4 ane pivot columns. A basis Col (A) is

$$
\left\{\left[\begin{array}{c}
-2 \\
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{c}
-5 \\
3 \\
11 \\
7
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
7 \\
5
\end{array}\right]\right\} \quad \operatorname{dim}(\operatorname{col} A)=3
$$

Example continued ...

$$
A=\left[\begin{array}{ccccc}
-2 & -5 & 8 & 0 & -17 \\
1 & 3 & -5 & 1 & 5 \\
3 & 11 & -19 & 7 & 1 \\
1 & 7 & -13 & 5 & -3
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & -2 & 0 & 3 \\
0 & 0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(c) Find a basis for $\operatorname{Nul} A$ and state $\operatorname{dim} \operatorname{Nul} A$.

Note that if $A \vec{x}=\overrightarrow{0}$ then \vec{x} is in \mathbb{R}^{5}

$$
x_{1}=-x_{3}-x_{5}
$$

$x_{2}=2 x_{3}-3 x_{5}$
x_{3} is free

$$
x_{4}=5 x_{5}
$$

x_{s} is free

$$
\vec{x}=x_{0}\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0 \\
0
\end{array}\right]+x_{s}\left[\begin{array}{c}
-1 \\
-3 \\
0 \\
5 \\
1
\end{array}\right]
$$

A basis for Nul (A) is

$$
\begin{aligned}
& \left\{\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-3 \\
0 \\
5 \\
1
\end{array}\right]\right\} \\
& \quad \operatorname{dim}(\text { Nul }(A))=2
\end{aligned}
$$

Remarks

- Row operations preserve row space, but change linear dependence relations of rows.
- Row operations change column space, but preserve linear dependence relations of columns.
- Another way to obtain a basis for Row A is to take the transpose A^{T} and do row operations. We have the following relationships:

$$
\operatorname{Row} A=\operatorname{Col} A^{T} \quad \text { and } \quad \operatorname{Col} A=\operatorname{Row} A^{T}
$$

Rank \& Nullity

Definition:

The rank of a matrix A, denoted $\operatorname{rank}(A)$, is the dimension of the column space of A.

Definition:

The nullity of a matrix A is the dimension of the null space.

Remark: Since the dimension of the column space is the number of pivot positions, the dimensions of the column and row spaces are the same. That is,

$$
\operatorname{rank}(A)=\operatorname{dim} \operatorname{Col}(A)=\operatorname{dim} \operatorname{Row}(A)
$$

The Rank-Nullity Theorem

Theorem:

For $m \times n$ matrix $A, \operatorname{dim} \operatorname{Col}(A)=\operatorname{dim} \operatorname{Row}(A)=\operatorname{rank}(A)$. Moreover

$\operatorname{rank} A+\operatorname{dim} \operatorname{NuI} A=n$.

The Rank-Nullity Theorem

Theorem:

For $m \times n$ matrix $A, \operatorname{dim} \operatorname{Col}(A)=\operatorname{dim} \operatorname{Row}(A)=\operatorname{rank}(A)$. Moreover

$$
\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n
$$

Note: This theorem states the rather obvious fact that
$\left\{\begin{array}{c}\text { number of } \\ \text { pivot columns }\end{array}\right\}+\left\{\begin{array}{c}\text { number of } \\ \text { non-pivot columns }\end{array}\right\}=\left\{\begin{array}{c}\text { total number } \\ \text { of columns }\end{array}\right\}$.

Examples

$$
\text { rank + nullity }=n \text {. }
$$

(1) A is a 5×4 matrix and $\operatorname{rank}(A)=4$. What is $\operatorname{dim} \operatorname{Nul} A$?

Dene, $n=4$. and $\operatorname{rank}(A)=4$.

4 + nullity $=4 \Rightarrow$ the nullity of A is zero.

Note that $\operatorname{Nol}(A)=\{\overrightarrow{0}\}_{C} \mathbb{R}^{n}$
Does $A \vec{x}=\overrightarrow{0}$ has nontrivial solutions?

Examples

$$
\text { rank }+ \text { nullitrs }=n \text {. }
$$

(2) Suppose A is 7×5 and $\operatorname{dim} \operatorname{Col} A=2$. Determine

1. the nullity of $A \quad n=5$ and $\operatorname{rank}(A)=\operatorname{dim}(\operatorname{col} A)=2$

$$
2+\text { nullity }=5 \Rightarrow \text { nullity is } 3 \text {. }
$$

2. the rank of A^{T}

$$
\begin{aligned}
\operatorname{rank}\left(A^{\top}\right)=\operatorname{dim}\left(\operatorname{col} A^{\top}\right) & =\operatorname{dim}(\operatorname{Row} A) \\
& =\operatorname{dim}(\operatorname{col} A)=2
\end{aligned}
$$

$$
\operatorname{ronk}\left(A^{\top}\right)=2
$$

3. the nullity of A^{T} for A^{\top}, the " n "is z.

$$
2+\text { nullity }=7 \Rightarrow \text { nullity of } 5 \text {. }
$$

Addendum to Invertible Matrix Theorem

Theorem:

Let A be an $n \times n$ matrix. The following are equivalent to the statement that A is invertible.
(m) The columns of A form a basis for \mathbb{R}^{n}
(n) $\operatorname{Col} A=\mathbb{R}^{n}$
(o) $\operatorname{dim} \operatorname{Col} A=n$
(p) $\operatorname{rank} A=n$
(q) $\operatorname{Nul} A=\{\mathbf{0}\}$
(r) $\operatorname{dim} \operatorname{Nul} A=0$

