April 20 Math 3260 sec. 52 Spring 2022

Section 6.1: Inner Product, Length, and Orthogonality

Definition: For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} we define the inner product of \mathbf{u} and \mathbf{v} (also called the dot product) by the matrix product

$$
\mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{lll}
u_{1} & u_{2} \cdots u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n} .
$$

Remark: Note that this product produces a scalar. It is sometimes called a scalar product.

The Norm

Definition: The norm of the vector $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ in \mathbb{R}^{n} is the nonnegative number

$$
\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

Theorem: For vector \mathbf{v} in \mathbb{R}^{n} and scalar c

$$
\|c \mathbf{v}\|=|c|\|\mathbf{v}\| .
$$

Definition: A vector \mathbf{u} in \mathbb{R}^{n} for which $\|\mathbf{u}\|=1$ is called a unit vector.

Given any nonzero vector \mathbf{v} in \mathbb{R}^{n}, normalizing the vector means finding the unit vector in the direction of \mathbf{v}

$$
\mathbf{v} /\|\mathbf{v}\|
$$

Distance in \mathbb{R}^{n}

Definition: For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, the distance between \mathbf{u} and \mathbf{v} is denoted by

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})
$$

and is defined by

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|
$$

Remark: This is the same as the traditional formula for distance used in \mathbb{R}^{2} between points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$,

$$
d=\sqrt{\left(y_{1}-y_{0}\right)^{2}+\left(x_{1}-x_{0}\right)^{2}}
$$

Example

Find the distance between the vectors $\mathbf{u}=(4,0,-1,1)$ and $\mathbf{v}=(0,0,2,7)$ in \mathbb{R}^{4}.

$$
\begin{aligned}
& \operatorname{dist}(\vec{u}, \vec{v})=\|\vec{u}-\vec{v}\| \\
& \vec{u}-\vec{v}=(4-0,0-0,-1-2,1-7)=(4,0,-3,-6) \\
& \operatorname{dist}(\vec{u}, \vec{v})=\sqrt{4^{2}+0^{2}+(-3)^{2}+(-6)^{2}}=\sqrt{61}
\end{aligned}
$$

Orthogonality

Definition: Two vectors are \mathbf{u} and \mathbf{v} orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.

Figure: Note that two vectors are perpendicular if $\|\mathbf{u}-\mathbf{v}\|=\|\mathbf{u}+\mathbf{v}\|$

Orthogonal and Perpendicular Show that $\|\mathbf{u}-\mathbf{v}\|=\|\mathbf{u}+\mathbf{v}\|$ if and only if $\mathbf{u} \cdot \mathbf{v}=0$.

Note

$$
\begin{aligned}
\|\vec{u}-\vec{v}\|^{2} & =(\vec{u}-\vec{v}) \cdot(\vec{u}-\vec{v}) \\
& =\vec{u} \cdot \vec{u}-\vec{v} \cdot \vec{u}-\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{v} \\
& =\|\vec{u}\|^{2}-2 \vec{u} \cdot \vec{v}+\|\vec{v}\|^{2} \\
\|\vec{u}+\vec{v}\|^{2} & =(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v}) \\
& =\vec{u} \cdot \vec{u}+\vec{v} \cdot \vec{u}+\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{v} \\
& =\|\vec{u}\|^{2}+2 \vec{u} \cdot \vec{v}+\|\vec{v}\|^{2}
\end{aligned}
$$

Suppose $\vec{u} \cdot \vec{v}=0$. Then

$$
\begin{aligned}
\|\vec{u}-\vec{v}\|^{2} & =\|\vec{u}+\vec{v}\|^{2} \\
\Rightarrow\|\vec{u}-\vec{v}\| & =\|\vec{u}+\vec{v}\| \quad \text { as these } \quad \text { are rornesative. }
\end{aligned}
$$

Suppose $\|\vec{u}-\vec{v}\|=\|\vec{u}+\vec{v}\|$. Then

$$
\begin{gathered}
\|\vec{u}-\vec{v}\|^{2}=\|\vec{u}+\vec{v}\|^{2} \\
\|\vec{u}\|^{2}-2 \vec{u} \cdot \vec{v}+\|\vec{v}\|^{2}=\|\vec{u}\|^{2}+2 \vec{u} \cdot \vec{v}+\|\vec{v}\|^{2} \\
\Rightarrow \quad 0=4 \vec{u} \cdot \vec{v} \\
\Rightarrow \quad \vec{u} \cdot \vec{v}=0
\end{gathered}
$$

The Pythagorean Theorem

Theorem: Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2} .
$$

This follows immediately from the observation that

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}+2 \mathbf{u} \cdot \mathbf{v} .
$$

The two vectors are defined as being orthogonal precisely when $\mathbf{u} \cdot \mathbf{v}=0$.

Orthogonal Complement

Definition: Let W be a subspace of \mathbb{R}^{n}. A vector \mathbf{z} in \mathbb{R}^{n} is said to be orthogonal to W if \mathbf{z} is orthogonal to every vector in W. That is, if

$$
\mathbf{z} \cdot \mathbf{w}=0 \quad \text { for every } \quad \mathbf{w} \in W .
$$

Definition: Given a subspace W of \mathbb{R}^{n}, the set of all vectors orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp}.

$$
W^{\perp}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \cdot \mathbf{w}=0 \quad \text { for every } \quad \mathbf{w} \in W\right\}
$$

Theorem:

Theorem: If W is a subspace of \mathbb{R}^{n}, then W^{\perp} is a subspace of \mathbb{R}^{n}.

This is readily proved by appealing to the properties of the inner product. In particular

$$
\begin{gathered}
\mathbf{0} \cdot \mathbf{w}=0 \text { for any vector } \mathbf{w} \\
(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w} \text { and } \\
(c \mathbf{u}) \cdot \mathbf{w}=\mathbf{c} \mathbf{u} \cdot \mathbf{w} .
\end{gathered}
$$

Example
Let $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$. Then $W^{\perp}=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$.
A vector in W has the form

$$
\mathbf{w}=x\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+z\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
0 \\
z
\end{array}\right] .
$$

A vector in \mathbf{v} in W^{\perp} has the form

$$
\mathbf{v}=y\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
y \\
0
\end{array}\right] .
$$

Note that

$$
\mathbf{w} \cdot \mathbf{v}=x(0)+0(y)+z(0)=0 .
$$

W is the $x z$-plane and W^{\perp} is the y-axis in \mathbb{R}^{3}.

Example
Let $A=\left[\begin{array}{ccc}1 & 3 & 2 \\ -2 & 0 & 4\end{array}\right]$. Show that if \mathbf{x} is in $\operatorname{Nul}(A)$, then \mathbf{x} is in $[\operatorname{Row}(A)]^{\perp}$.
Let's characterize wal (A) (ie. solve $A \vec{x}=\overrightarrow{0}$)

$$
\left[\begin{array}{ll}
A & 0
\end{array}\right]=\left[\begin{array}{cccc}
1 & 3 & 2 & 0 \\
-2 & 0 & 4 & 0
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{cccc}
1 & 0 & -2 & 0 \\
0 & 1 & 4 / 3 & 0
\end{array}\right]
$$

For $\begin{aligned} A \vec{x}=\overrightarrow{0}, & x_{1}=2 x_{3} \\ x_{2} & =-4 / 3 x_{3}\end{aligned}, x_{3}$ is free

$$
\vec{x}=x_{3}\left[\begin{array}{c}
2 \\
-4 / 3 \\
1
\end{array}\right]=t\left[\begin{array}{c}
6 \\
-4 \\
3
\end{array}\right] \text { for } t \in \mathbb{R}
$$

$$
\operatorname{Row}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
4
\end{array}\right]\right\}=\left\{\vec{u}_{1}, \vec{u}_{2}\right\}
$$

Note for \vec{x} in Nul (A)

$$
\begin{aligned}
& \vec{x} \cdot \vec{u}_{1}=t\left[\begin{array}{c}
6 \\
-4 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]=t(6-12+6)=0 \\
& \vec{x} \cdot \vec{u}_{2}=t\left[\begin{array}{c}
6 \\
-4 \\
3
\end{array}\right] \cdot\left[\begin{array}{c}
-2 \\
0 \\
4
\end{array}\right]=t(-12+0+12)=0
\end{aligned}
$$

So \vec{x} in Wre(A) means \vec{x} is in

$$
[\operatorname{Row}(A)]^{\perp}
$$

$$
\left[\begin{array}{ccc}
1 & 3 & 2 \\
-2 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Theorem

Theorem: Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A. That is

$$
[\operatorname{Row}(A)]^{\perp}=\operatorname{Nul}(A) .
$$

The orthongal complement of the column space of A is the null space of A^{T}-i.e.

$$
[\operatorname{Col}(A)]^{\perp}=\operatorname{Nul}\left(A^{T}\right)
$$

Example: Find the orthogonal complement of $\operatorname{Col}(A)$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
5 & 2 & 1 \\
-3 & 3 & 0 \\
2 & 4 & 1 \\
2 & -2 & 9 \\
0 & 1 & -1
\end{array}\right] \quad[\operatorname{Col}(A)]^{\perp}=\operatorname{Nul}\left(A^{\top}\right) \\
& A^{\top}=\left[\begin{array}{ccccc}
5 & -3 & 2 & 2 & 0 \\
2 & 3 & 4 & -2 & 1 \\
1 & 0 & 1 & 9 & -1
\end{array}\right] \quad \begin{array}{l}
A^{\top} \vec{x}=\overrightarrow{0} \\
\xrightarrow{\operatorname{rret}}\left[\begin{array}{ccccc}
1 & 0 & 0 & -54 & 7 \\
0 & 1 & 0 & -146 & 19 / 3 \\
0 & 0 & 1 & 63 & -8
\end{array}\right] \quad \begin{array}{l}
x_{1}=54 x_{4}-7 x_{5} \\
x_{2}=\frac{146}{3} x_{4}-\frac{19}{3} x_{5} \\
x_{3}=-63 x_{4}+8 x_{5} \\
x_{4}, x_{5} \text { are free }
\end{array}
\end{array} \begin{array}{l}
\text { Appili9,2022 }
\end{array} \\
&
\end{aligned}
$$

For \vec{x} in Nue $\left(A^{\top}\right)$

$$
\begin{aligned}
& \vec{x}=x_{4}\left[\begin{array}{c}
54 \\
\frac{146}{3} \\
-63 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-7 \\
-\frac{19}{3} \\
8 \\
0 \\
1
\end{array}\right] \\
& {[\operatorname{Col}(A)]^{\perp}=\operatorname{Span}\left\{\left[\begin{array}{c}
54 \\
\frac{146}{3} \\
-63 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-7 \\
-\frac{19}{3} \\
8 \\
0 \\
1
\end{array}\right]\right\}}
\end{aligned}
$$

Section 6.2: Orthogonal Sets

Remark: We know that if $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ is a basis for a subspace W of \mathbb{R}^{n}, then each vector \mathbf{x} in W can be realized (uniquely) as a sum

$$
\mathbf{x}=c_{1} \mathbf{b}_{2}+\cdots+c_{p} \mathbf{b}_{p}
$$

If n is very large, the computations needed to determine the coefficients c_{1}, \ldots, c_{p} may require a lot of time (and machine memory).

Question: Can we seek a basis whose nature simplifies this task? And what properties should such a basis possess?

Orthogonal Sets

Definition: An indexed set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in \mathbb{R}^{n} is said to be an orthogonal set provided each pair of distinct vectors in the set is orthogonal. That is, provided

$$
\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0 \quad \text { whenever } \quad i \neq j .
$$

Example: Show that the set $\left\{\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ -4 \\ 7\end{array}\right]\right\}$ is an orthogonal set.

$$
\begin{aligned}
& \text { Coll these } \vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3} \text { in the order given } \\
& \vec{u}_{1} \cdot \vec{u}_{2}=-3+2+1=0 \\
& \vec{u}_{1} \cdot \vec{u}_{3}=-3-4+7=0
\end{aligned}
$$

$$
\begin{array}{r}
\left\{\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
-4 \\
7
\end{array}\right]\right\} \\
\vec{u}_{2} \cdot \vec{u}_{3}=1-8+7=0
\end{array}
$$

The set is an orthogond set.

Orthongal Basis

Definition: An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis that is also an orthogonal set.

Theorem: Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. Then each vector \mathbf{y} in W can be written as the linear combination

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}, \quad \text { where the weights }
$$

$$
c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}} .
$$

Example
$\left\{\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ -4 \\ 7\end{array}\right]\right\}$ is an orthogonal basis of \mathbb{R}^{3}. Express the vector $\mathbf{y}=\left[\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right]$ as a linear combination of the basis vectors.

$$
\begin{aligned}
\vec{y}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+c_{3} \vec{u}_{3} & c_{j}=\frac{\vec{y} \cdot u_{j}}{\left\|\vec{u}_{j}\right\|^{2}} \\
\vec{y} \cdot \vec{u}_{1}=-3, \quad \vec{u}_{1} \cdot \overrightarrow{u_{1}}=11 & c_{1}=\frac{-3}{11} \\
\vec{y} \cdot \vec{u}_{2}=8, \quad \vec{u}_{2} \cdot \vec{u}_{2}=6 & c_{2}=\frac{8}{6}=\frac{4}{3} \\
\vec{y} \cdot \vec{u}_{3}=-10, \quad \vec{u}_{3} \cdot \vec{u}_{3}=66 & c_{3}=\frac{-10}{66}=\frac{-5}{33}
\end{aligned}
$$

$$
\left[\begin{array}{c}
-2 \\
3 \\
0
\end{array}\right]=\frac{-3}{11}\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]+\frac{4}{3}\left[\begin{array}{l}
-1 \\
2 \\
1
\end{array}\right]-\frac{5}{33}\left[\begin{array}{c}
-1 \\
-4 \\
7
\end{array}\right]
$$

