April 21 Math 2306 sec. 52 Spring 2023

Section 16: Laplace Transforms of Derivatives and IVPs

Solving a System: We can solve a system of ODEs using Laplace transforms. Here, we'll consider systems that are

- linear,
- having initial conditions at $t=0$, and
- constant coefficient.

Let's see it in action (i.e. with a couple of examples).

Example

Figure: If we label current i_{2} as $x(t)$ and current i_{3} as $y(t)$, we get the system of equations below. (Assuming $i_{1}(0)=0$.)

Solve the system of equations

$$
\begin{array}{ll}
\frac{d x}{d t}=-2 x-2 y+60, & x(0)=0 \\
\frac{d y}{d t}=-2 x-5 y+60, & y(0)=0
\end{array}
$$

$$
\begin{array}{ll}
\frac{d x}{d t}=-2 x-2 y+60, & x(0)=0 \\
\frac{d y}{d t}=-2 x-5 y+60, & y(0)=0
\end{array}
$$

Let $X(s)=\mathcal{L}\{x(t)\}$, and $Y(s)=\mathcal{L}\{y(t)\}$.

$$
\begin{aligned}
& \mathcal{L}\left\{x^{\prime}\right\}=\mathcal{L}\{-2 x-2 y+60\}=-2 \mathcal{L}\{x\}-2 \mathcal{L}\{y\}+60 \mathcal{L}\{1\} \\
& \mathcal{L}\left\{y^{\prime}\right\}=\mathcal{L}\{-2 x-5 y+60\}=-2 \mathcal{L}\{x\}-5 \mathcal{L}\{y\}+60 \mathscr{L}\{1\} \\
& s X(s)-X^{\prime \prime}(0)=-2 X(s)-2 Y(s)+\frac{60}{5} \\
& s Y(s)-y(9)=-2 X(s)-5 Y(s)+60 / s
\end{aligned}
$$

$$
\begin{aligned}
& s X+2 X+2 Y=\frac{60}{s} \\
& 2 X+s Y+5 Y=\frac{60}{s} \\
&(s+2) X+2 Y=\frac{60}{s} \\
& 2 X+(s+5) Y=\frac{60}{s} \\
& {\left[\begin{array}{rr}
s+2 & 2 \\
2 & s+5
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right] }=\left[\begin{array}{c}
60 / s \\
60 / s
\end{array}\right] \\
& A=\left[\begin{array}{ll}
s+2 \\
2 & s+5
\end{array}\right] \\
& \operatorname{det}(A)=(s+2)(s+5)-4 \\
&=s^{2}+7 s+10-4=s^{2}+7 s+6
\end{aligned}
$$

$$
\begin{aligned}
& A_{X}=\left[\begin{array}{cc}
60 / s & 2 \\
60 / s & s+5
\end{array}\right] \operatorname{det}\left(A_{X}\right)=\frac{60}{s}(s+5)-\frac{60}{s}(2) \\
&=\frac{60}{s}(s+3) \\
& A_{Y}=\left[\begin{array}{cc}
s+2 & 60 / s \\
2 & 60 / s
\end{array}\right] \operatorname{det}\left(A_{Y}\right)=(s+2) \frac{60}{s}-(2) \frac{60}{s} \\
&=\frac{60}{s}(s)=60 \\
& X(s)=\frac{\operatorname{det}\left(A_{X}\right)}{\operatorname{det}(A)}, \quad Y_{(s)}=\frac{\operatorname{det}\left(A_{Y}\right)}{\operatorname{det}(A)} \\
& X(s)=\frac{\frac{60}{s}(s+3)}{s^{2}+7 s+6}=\frac{60(s+3)}{s(s+1)(s+6)}
\end{aligned}
$$

$$
\begin{gathered}
Y(s)=\frac{60}{s^{2}+7 s+6}=\frac{60}{(s+1)(s+6)} \\
X(s)=\frac{60(s+3)}{s(s+1) \cdot(s+6)}=\frac{A}{s}+\frac{B}{s+1}+\frac{C}{s+6} \\
A=30, \quad B=-24, \quad C=-6 \\
\Psi(s)=\frac{60}{(s+1)(s+6)}=\frac{D}{s+1}+\frac{E}{s+6} \\
D=12, \quad E=-12
\end{gathered}
$$

$$
\begin{aligned}
& X(s)=\frac{30}{s}-\frac{24}{s+1}-\frac{6}{s+6} \\
& Y(s)=\frac{12}{s+1}-\frac{12}{s+6}
\end{aligned}
$$

The solution $x(t)=\mathcal{L}^{-1}\{X(s)\}$ and

$$
\begin{aligned}
& y(t)=\mathcal{L}^{-1}\{Y(s)\} \\
& x(t)=30-24 e^{-t}-6 e^{-6 t} \\
& y(t)=12 e^{-t}-12 e^{-6 t}
\end{aligned}
$$

Example
Use the Laplace transform to solve the system of equations

$$
\begin{aligned}
x^{\prime \prime}(t) & =y, & x(0)=1, \quad x^{\prime}(0)=0 \\
y^{\prime}(t) & =x, & y(0)=1
\end{aligned}
$$

Let $X(s)=\mathcal{L}\{x(t)\}$ and $Y(s)=\mathcal{L}\{y(t)\}$

$$
\begin{array}{ll}
\mathcal{L}\left\{x^{\prime \prime}\right\}=\mathcal{L}\{y\} \\
\mathcal{L}\left\{y^{\prime}\right\}=\mathcal{L}\{x\}
\end{array} \Rightarrow \begin{array}{r}
s^{2} X-s x(0)-x^{\prime}(0)=Y \\
s Y-y(0)=X
\end{array}
$$

$$
\begin{aligned}
& \left.\left.\begin{array}{c}
s^{2} X-s=Y \\
s Y-1=X
\end{array} \quad \Rightarrow \begin{array}{l}
s^{2} X-Y=s \\
-X+s Y=1 \\
-1
\end{array}\right] \quad s\right]\left[\begin{array}{cc}
s^{2} & -1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
s \\
1
\end{array}\right] \\
& A=\left[\begin{array}{cc}
s^{2} & -1 \\
-1 & s
\end{array}\right] \operatorname{det}(A)=s^{3}-1 \\
& A_{X}=\left[\begin{array}{cc}
s & -1 \\
1 & s
\end{array}\right] \operatorname{det}\left(A_{X}\right)=s^{2}+1 \\
& A_{Y}=\left[\begin{array}{cc}
s^{2} & s \\
-1 & 1
\end{array}\right] \operatorname{det}\left(A_{Y}\right)=s^{2}+s
\end{aligned}
$$

$$
\begin{aligned}
& X(s)=\frac{\operatorname{det}\left(A_{x}\right)}{\operatorname{det}(A)}=\frac{s^{2}+1}{s^{3}-1}=\frac{s^{2}+1}{(s-1)\left(s^{2}+s+1\right)} \\
& Y(s)=\frac{\operatorname{det}\left(A_{\varphi}\right)}{\operatorname{det}(A)}=\frac{s^{2}+s}{s^{3}-1}=\frac{s(s+1)}{(s-1)\left(s^{2}+s+1\right)}
\end{aligned}
$$

We have to do a decomposition and take the inverse transform. We'll pick this up next time.

