April 22 Math 3260 sec. 51 Spring 2022

Section 6.2: Orthogonal Sets

Definition: An indexed set $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ in \mathbb{R}^n is said to be an orthogonal set provided each pair of distinct vectors in the set is orthogonal. That is, provided

$$\mathbf{u}_i \cdot \mathbf{u}_j = 0$$
 whenever $i \neq j$.

Definition: An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis that is also an orthogonal set.

Orthogonal Basis

Theorem: Let $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . Then each vector \mathbf{y} in W can be written as the linear combination

$$\mathbf{y}=c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots+c_{
ho}\mathbf{u}_{
ho}, \quad$$
 where the weights $c_j=rac{\mathbf{y}\cdot\mathbf{u}_j}{\mathbf{u}_j\cdot\mathbf{u}_j}.$

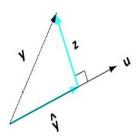
2/39

Projection

Given a nonzero vector **u**, suppose we wish to decompose another nonzero vector **v** into a sum of the form

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

in such a way that $\hat{\mathbf{y}}$ is parallel to \mathbf{u} and \mathbf{z} is perpendicular to \mathbf{u} .



Projection

Since $\hat{\mathbf{y}}$ is parallel to \mathbf{u} , there is a scalar α such that

$$\hat{\mathbf{y}} = \alpha \mathbf{u}.$$

$$(\cot x + \omega \mathbf{i}) \quad \vec{y} = \hat{y} + \vec{z}$$

$$(\cot x + \omega \mathbf{i}) \quad \vec{y} = \hat{y} + \vec{z}$$

$$(\cot x + \omega \mathbf{i}) \quad \vec{y} = \hat{y} + \vec{z}$$

$$(\cot x + \omega \mathbf{i}) \quad \vec{y} = \vec{y} \cdot \vec{y} + \vec{y} \cdot \vec{z}$$

$$(\cot x + \omega \mathbf{i}) \quad \vec{y} = \vec{y} \cdot \vec{y} + \vec{y} \cdot \vec{z}$$

$$(\cot x + \omega \mathbf{i}) \quad \vec{y} = \vec{y} \cdot \vec{y} \cdot \vec{z}$$

$$(\cot x + \omega \mathbf{i}) \quad \vec{y} = \vec{y} \cdot \vec{y} \cdot \vec{z}$$

$$(\cot x + \omega \mathbf{i}) \quad \vec{y} = \vec{y} \cdot \vec{y} \cdot \vec{z}$$

$$(\cot x + \omega \mathbf{i}) \quad \vec{y} = \vec{y} \cdot \vec{y} \cdot \vec{z}$$

$$(\cot x + \omega \mathbf{i}) \quad \vec{y} = \vec{y} \cdot \vec{y} \cdot \vec{z}$$

$$(\cot x + \omega \mathbf{i}) \quad \vec{y} = \vec{y} \cdot \vec{y} \cdot \vec{z}$$

$$(\cot x + \omega \mathbf{i}) \quad \vec{y} = \vec{y} \cdot \vec{y} \cdot \vec{z}$$

$$(\cot x + \omega \mathbf{i}) \quad \vec{y} = \vec{y} \cdot \vec{y} \cdot \vec{z}$$

$$(\cot x + \omega \mathbf{i}) \quad \vec{y} = \vec{y} \cdot \vec{y} \cdot \vec{y} \cdot \vec{z}$$

$$(\cot x + \omega \mathbf{i}) \quad \vec{y} = \vec{y} \cdot \vec{y} \cdot \vec{y} \cdot \vec{z}$$

$$(\cot x + \omega \mathbf{i}) \quad \vec{y} = \vec{y} \cdot \vec{y} \cdot \vec{y} \cdot \vec{y} \cdot \vec{z}$$

Projection onto the subspace $L = \text{Span}\{\mathbf{u}\}\$

Notation:
$$\hat{\mathbf{y}} = \text{proj}_{\mathcal{L}} \mathbf{y} = \left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}$$

Example: Let $\mathbf{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Write $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ where $\hat{\mathbf{y}}$ is in Span $\{\mathbf{u}\}$ and \mathbf{z} is orthogonal to \mathbf{u} .

Example Continued...

Determine the distance between the point (7,6) and the line Span $\{u\}$.

This distance is just dist
$$(y, \hat{y}) = ||z||$$

$$||z|| = \sqrt{(-1)^2 + 2^2} = \sqrt{5}$$

Distance between point and line

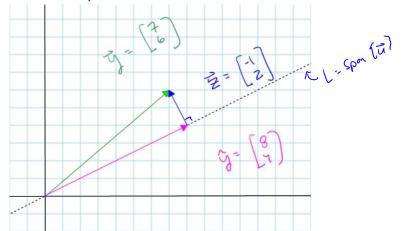


Figure: The distance between the point (7,6) and the line Span $\{u\}$ is the norm of z.

Orthonormal Sets

Definition: A set $\{u_1, \ldots, u_p\}$ is called an **orthonormal set** if it is an orthogonal set of **unit vectors**.

Definition: An **orthonormal basis** of a subspace W of \mathbb{R}^n is a basis that is also an orthonormal set.

The set
$$\left\{ \begin{bmatrix} \frac{3}{5} \\ \frac{4}{5} \end{bmatrix}, \begin{bmatrix} -\frac{4}{5} \\ \frac{3}{5} \end{bmatrix} \right\}$$
 is an orthonormal basis for \mathbb{R}^2 .

Note that if
$$\mathbf{u}_1 = \begin{bmatrix} \frac{3}{5} \\ \frac{4}{5} \end{bmatrix}$$
 and $\mathbf{u}_2 = \begin{bmatrix} -\frac{4}{5} \\ \frac{3}{5} \end{bmatrix}$, then

$$\mathbf{u}_{1} \cdot \mathbf{u}_{1} = \left(\frac{3}{5}\right)^{2} + \left(\frac{4}{5}\right)^{2} = 1$$

$$\mathbf{u}_{1} \cdot \mathbf{u}_{2} = \left(\frac{3}{5}\right) \left(-\frac{4}{5}\right) + \left(\frac{4}{5}\right) \left(\frac{3}{5}\right) = 0$$

$$\mathbf{u}_{2} \cdot \mathbf{u}_{2} = \left(-\frac{4}{5}\right)^{2} + \left(\frac{3}{5}\right)^{2} = 1$$

Orthogonal Matrix

Consider the matrix $U = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$ whose columns are the vectors in the last example. Compute the product

$$U^{T}U = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

What does this say about U^{-1} ?

Orthogonal Matrix

Definition: A square matrix U is called an **orthogonal matrix** if $U^T = U^{-1}$.

Theorem: An $n \times n$ matrix U is orthogonal if and only if it's columns form an orthonormal basis of \mathbb{R}^n .

The linear transformation associated to an orthogonal matrix preserves *lenghts* and *angles* in the following sense: