April 22 Math 3260 sec. 51 Spring 2022

Section 6.2: Orthogonal Sets

Definition: An indexed set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in \mathbb{R}^{n} is said to be an orthogonal set provided each pair of distinct vectors in the set is orthogonal. That is, provided

$$
\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0 \quad \text { whenever } \quad i \neq j .
$$

Definition: An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis that is also an orthogonal set.

Orthogonal Basis

Theorem: Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. Then each vector \mathbf{y} in W can be written as the linear combination
$\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}, \quad$ where the weights

$$
c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}} .
$$

Projection

Given a nonzero vector u, suppose we wish to decompose another nonzero vector \mathbf{y} into a sum of the form

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

in such a way that $\hat{\mathbf{y}}$ is parallel to \mathbf{u} and \mathbf{z} is perpendicular to \mathbf{u}.

Projection
Since $\hat{\mathbf{y}}$ is parallel to \mathbf{u}, there is a scalar α such that

$$
\hat{\mathbf{y}}=\alpha \mathbf{u}
$$

Start wo $\vec{y}=\hat{y}+\vec{z}$
Use $\vec{z} \cdot \vec{u}=0$ and $\hat{y}=\alpha \vec{u}$

$$
\begin{aligned}
& \vec{u} \cdot \vec{y}=\vec{u} \cdot(\hat{y}+\vec{z})=\vec{u} \cdot \hat{y}+\underbrace{\vec{u} \cdot \vec{z}}_{\ddot{0}} \\
& \Rightarrow \vec{u} \cdot \vec{y}=\vec{u} \cdot(\alpha \vec{u})=\alpha \vec{u} \cdot \vec{u} \quad \sin c \vec{y}=\alpha \vec{u} \\
& \Rightarrow \quad \alpha=\frac{\vec{u} \cdot \vec{y}}{\vec{u} \cdot \vec{u}}=\frac{\vec{u} \cdot \vec{y}}{\|\vec{u}\|^{2}}
\end{aligned}
$$

Projection onto the subspace $L=\operatorname{Span}\{\mathbf{u}\}$
Notation: $\quad \hat{\mathbf{y}}=\operatorname{proj}_{L} \mathbf{y}=\left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}$
Example: Let $\mathbf{y}=\left[\begin{array}{l}7 \\ 6\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$. Write $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$ where $\hat{\mathbf{y}}$ is in $\operatorname{Span}\{\mathbf{u}\}$ and \mathbf{z} is orthogonal to \mathbf{u}.

$$
\begin{aligned}
& \vec{y} \cdot \vec{u}=7 \cdot 4+6 \cdot 2=40 \quad \vec{u} \cdot \vec{u}=4^{2}+2^{2}=20 \\
& \hat{y}=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}=\frac{40}{20} \vec{u}=2 \vec{u}=2\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{l}
8 \\
4
\end{array}\right] \\
& \vec{z}=\vec{y}-\hat{y}=\left[\begin{array}{l}
7 \\
6
\end{array}\right]-\left[\begin{array}{l}
0 \\
4
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \\
& \vec{y}=\left[\begin{array}{l}
8 \\
4
\end{array}\right]+\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
\end{aligned}
$$

Example Continued...
Determine the distance between the point $(7,6)$ and the line Span $\{\mathbf{u}\}$.

This distance is just

$$
\begin{aligned}
& \operatorname{dist}(\vec{y}, \hat{y})=\|\vec{z}\| \quad \vec{z}=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \\
& \|\vec{z}\|=\sqrt{(-1)^{2}+2^{2}}=\sqrt{5}
\end{aligned}
$$

Distance between point and line

Figure: The distance between the point $(7,6)$ and the line $\operatorname{Span}\{\mathbf{u}\}$ is the norm of \mathbf{z}.

Orthonormal Sets

Definition: A set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is called an orthonormal set if it is an orthogonal set of unit vectors.

Definition: An orthonormal basis of a subspace W of \mathbb{R}^{n} is a basis that is also an orthonormal set.

Example

The set $\left\{\left[\begin{array}{l}\frac{3}{5} \\ \frac{4}{5}\end{array}\right],\left[\begin{array}{c}-\frac{4}{5} \\ \frac{3}{5}\end{array}\right]\right\}$ is an orthonormal basis for \mathbb{R}^{2}.

Note that if $\mathbf{u}_{1}=\left[\begin{array}{l}\frac{3}{5} \\ \frac{4}{5}\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{c}-\frac{4}{5} \\ \frac{3}{5}\end{array}\right]$, then

$$
\begin{aligned}
& \mathbf{u}_{1} \cdot \mathbf{u}_{1}=\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}=1 \\
& \mathbf{u}_{1} \cdot \mathbf{u}_{2}=\left(\frac{3}{5}\right)\left(-\frac{4}{5}\right)+\left(\frac{4}{5}\right)\left(\frac{3}{5}\right)=0 \\
& \mathbf{u}_{2} \cdot \mathbf{u}_{2}=\left(-\frac{4}{5}\right)^{2}+\left(\frac{3}{5}\right)^{2}=1
\end{aligned}
$$

Orthogonal Matrix

Consider the matrix $U=\left[\begin{array}{cc}\frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5}\end{array}\right]$ whose columns are the vectors in the last example. Compute the product

$$
\begin{aligned}
U^{T} U=\left[\begin{array}{cc}
\frac{3}{5} & \frac{4}{5} \\
-\frac{4}{5} & \frac{3}{5}
\end{array}\right]\left[\begin{array}{cc}
3 / 5 & -4 / 5 \\
4 / 5 & 3 / 5
\end{array}\right] & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
U^{-1} & =U^{\top}
\end{aligned}
$$

What does this say about U^{-1} ?

Orthogonal Matrix

Definition: A square matrix U is called an orthogonal matrix if $U^{T}=U^{-1}$.

Theorem: An $n \times n$ matrix U is orthogonal if and only if it's columns form an orthonormal basis of \mathbb{R}^{n}.

The linear transformation associated to an orthogonal matrix preserves lenghts and angles in the following sense:

