April 22 Math 3260 sec. 51 Spring 2024

Section 6.3: Orthogonal Projections

Figure: Given a subspace W of \mathbb{R}^n and a vector \mathbf{y} in \mathbb{R}^n , we can express \mathbf{y} uniquely as a sum $\operatorname{proj}_W \mathbf{y} + \mathbf{z}$ where $\operatorname{proj}_W \mathbf{y}$ is in W and \mathbf{z} is in W^{\perp} . Note that $\operatorname{proj}_W \mathbf{y}$ is the point in W closest to \mathbf{y} and $\|\mathbf{z}\|$ is the distance between \mathbf{y} and W.

Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n . Each vector **y** in \mathbb{R}^n can be written uniquely as a sum

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} .

If $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is any orthogonal basis for W, then

$$\hat{\mathbf{y}} = \sum_{j=1}^{\rho} \left(\frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j} \right) \mathbf{u}_j, \text{ and } \mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}.$$

Remark: The formula for $\hat{\mathbf{y}}$ is the sum of the projections of \mathbf{y} onto each line Span{ \mathbf{u}_i }.

$$\operatorname{proj}_{W} \mathbf{y} = \operatorname{proj}_{\mathbf{u}_{1}} \mathbf{y} + \operatorname{proj}_{\mathbf{u}_{2}} \mathbf{y} + \cdots + \operatorname{proj}_{\mathbf{u}_{p}} \mathbf{y}.$$

April 19, 2024 2/22

Example
Let
$$\mathbf{y} = \begin{bmatrix} 4\\8\\1 \end{bmatrix}$$
, $\mathbf{u}_1 = \begin{bmatrix} 2\\1\\2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -2\\2\\1 \end{bmatrix}$ and $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$.

We verified that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is orthogonal basis for W, and we found that

$$\operatorname{proj}_{W} \mathbf{y} = \left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1} + \left(\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}\right) \mathbf{u}_{2} = \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}.$$

The orthogonal part was

$$\mathbf{y} - \operatorname{proj}_{W} \mathbf{y} = \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ -4 \end{bmatrix}.$$

The distance between \mathbf{y} and W was found to be

dist
$$(W, \mathbf{y}) = \|\mathbf{y} - \operatorname{proj}_W \mathbf{y}\| = \sqrt{2^2 + 4^2 + (-4)^2} = 6.$$

April 19, 2024 3/22

• • • • • • • • • • • •

Computing Orthogonal Projections

Theorem

If $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an **orthonormal** basis of a subspace W of \mathbb{R}^n , and **y** is any vector in \mathbb{R}^n then

$$\operatorname{proj}_{W} \mathbf{y} = \sum_{j=1}^{p} \left(\mathbf{y} \cdot \mathbf{u}_{j} \right) \mathbf{u}_{j}.$$

And, if U is the matrix $U = [\mathbf{u}_1 \cdots \mathbf{u}_p]$, then the above is equivalent to

$$\operatorname{proj}_{W} \mathbf{y} = UU' \mathbf{y}.$$

Remark: In general, *U* is not square; it's $n \times p$. So even though UU^T will be a square matrix, it is not the same matrix as U^TU and it is not the identity matrix.

Example

Let
$$\mathbf{v}_1 = \begin{bmatrix} 2\\1\\2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2\\2\\1 \end{bmatrix}$ and $W = \text{Span} \{\mathbf{v}_1, \mathbf{v}_2\}$. Find an

orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ for *W*. Then compute the matrices $U^T U$ and UU^T where $U = [\mathbf{u}_1 \ \mathbf{u}_2]$.

$$\begin{aligned} \vec{u}_{i} &= \frac{1}{\|\vec{v}_{i}\|} \vec{v}_{i} , \quad \vec{u}_{z} &= \frac{1}{\|\vec{v}_{z}\|} \vec{v}_{z} \\ & \cdot \\ \|\vec{v}_{i}\|^{2} &= 2^{2} + 1^{2} + 2^{2} = 9 \implies \|\vec{v}_{i}\| = 3 \\ \|\vec{v}_{z}\|^{2} &= (-z)^{2} + z^{2} + 1^{2} = 9 \implies \|\vec{v}_{z}\|^{2} = 3 \\ \|\vec{v}_{z}\|^{2} &= (-z)^{2} + z^{2} + 1^{2} = 9 \implies \|\vec{v}_{z}\|^{2} = 3 \\ \vec{u}_{i} &= \frac{1}{3} \begin{bmatrix} z \\ i \\ z \\ z \end{bmatrix} = \begin{bmatrix} 2/3 \\ i/3 \\ z/3 \end{bmatrix} , \quad \vec{u}_{z} &= \frac{1}{3} \begin{bmatrix} -2 \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} -2/3 \\ z/3 \\ i/3 \end{bmatrix} \\ + \mathbf{u}_{z} + \mathbf{e}_{z} + \mathbf{e}_{z} + \mathbf{e}_{z} = \mathbf{e}_{z} = \mathbf{e}_{z} \end{aligned}$$

$$\mathcal{U} = \begin{bmatrix} \frac{2}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} z & -z \\ 1 & z \\ z & 1 \end{bmatrix}$$

$$\begin{array}{c} u u^{T} = \frac{1}{3} \cdot \frac{1}{3} \begin{pmatrix} z & -z \\ i & z \\ z & i \end{pmatrix} \begin{pmatrix} z & i & z \\ -z & z & i \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 8 & -2 & z \\ -2 & 5 & 4 \\ z & 4 & 5 \end{pmatrix}$$

$$\begin{array}{c} 3 \times 2 & 2 \times 3 \\ 3 \times 3 & \end{array}$$

April 19, 2024 6/22

Note:
$$(UUT)^T = (UT)^TUT = UUT$$

This is why U has the
sort of symmetry across
the main diagonal.
FYI: Such a matrix is
called a "symmetric"
matrix

Example

$$W = \operatorname{Span} \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\2\\1 \end{bmatrix} \right\} \text{ and } \mathbf{y} = \begin{bmatrix} 4\\8\\1 \end{bmatrix}$$

Use the matrix formulation to find $proj_W y$.

크

~ ·

×.

$$= \frac{1}{9} \begin{bmatrix} 8(4) - 2(8) + 2(1) \\ -2(4) + 5(8) + 4(1) \\ 2(4) + 4(8) + 5(1) \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 18 \\ 36 \\ 45 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}$$

Section 6.4: Gram-Schmidt Orthogonalization

Big Question:

Given any-old basis for a subspace W of \mathbb{R}^n , can we construct an orthogonal basis for that same space?

Example: Let
$$W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2\} = \text{Span}\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\-1\\-1 \end{bmatrix} \right\}$$
. Find an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ that spans W .

$$\vec{v}_1 = a_1 \vec{x}_1 \quad a_2 \vec{x}_2 \quad \text{Let's set } a_1 = 1, \quad a_2 = 0$$

 $\vec{v}_2 = b_1 \vec{x}_1 + b_2 \vec{x}_2 \quad \text{Let's } \text{ take } \quad b_2 = 1$

A (1) A (2) A (

April 19, 2024

10/22

so far, $\vec{v}_1 = \vec{\chi}_1$ ad $\vec{v}_2 = \vec{b}_1 \vec{\chi}_1 + \vec{\chi}_2$ $v_1, v_2 = 0$ we need $\vec{v}_1 \cdot \vec{v}_2 = \vec{x}_1 \cdot (b_1 \vec{x}_1 + \vec{x}_2) = 0$ $b_1 \vec{X}_1 \cdot \vec{X}_1 + \vec{X}_1 \cdot \vec{X}_2 = 0$ \Rightarrow $b, \ddot{x}, \ddot{x}, = -\ddot{x}, \ddot{x}_2$ $b_1 = -\frac{X_1 \cdot X_2}{X_1 \cdot X_1} + \frac{X_2}{R^{ro)}}$ 53 $\overline{V} = \overline{X}$ $\vec{v}_1 - \vec{v}_1 = \vec{v}_2 - \vec{v}_1 \cdot \vec{v}_2$ Z, イロト イ理ト イヨト イヨト April 19, 2024 11/22

The new basis is $\left(\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2/3\\-1/3\\-1/3\\-1/3 \end{bmatrix} \right)$

> < □ ▶ < @ ▶ < 重 ▶ 4 重 ▶ 重 の Q @ April 19, 2024 12/22

Theorem: Gram Schmidt Process

Let $\{\mathbf{x}_1, \ldots, \mathbf{x}_p\}$ be any basis for the nonzero subspace W of \mathbb{R}^n . Define the set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ via

$$\mathbf{v}_{1} = \mathbf{x}_{1}$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \left(\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} - \left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2}$$

$$\vdots$$

$$\mathbf{v}_{3} = \mathbf{v}_{3} - \left(\frac{\mathbf{v}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} - \left(\frac{\mathbf{v}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2}$$

$$\mathbf{v}_{p} = \mathbf{x}_{p} - \sum_{j=1}^{p-1} \left(\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{j}}{\mathbf{v}_{j} \cdot \mathbf{v}_{j}} \right) \mathbf{v}_{j}.$$

Then $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is an orthogonal basis for *W*. Moreover, for each $k = 1, \ldots, p$

$$\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_k\} = \operatorname{Span}\{\mathbf{x}_1,\ldots,\mathbf{x}_k\}.$$