April 24 Math 2306 sec. 51 Spring 2023

Section 16: Laplace Transforms of Derivatives and IVPs

Solving a System: We can solve a system of ODEs using Laplace transforms. Here, we'll consider systems that are

- linear,
- having initial conditions at $t=0$, and
- constant coefficient.

Let's see it in action (i.e. with a couple of examples).

Example
Use the Laplace transform to solve the system of equations

$$
\begin{aligned}
x^{\prime \prime}(t) & =y, & x(0)=1, \quad x^{\prime}(0)=0 \\
y^{\prime}(t) & =x, & y(0)=1
\end{aligned}
$$

Let $X(s)=\mathscr{L}\{x(t)\}$ and $Y(s)=\mathscr{L}\{y(t)\}$

$$
\begin{aligned}
& \mathscr{L}\left\{x^{\prime \prime}\right\}=\mathcal{L}\{y\} \Rightarrow s^{2} X(s)-s x(0)-x^{\prime}(0)=Y(s) \\
& \mathscr{0}\left\{y^{\prime}\right\}=\mathscr{L}\{x\} \Rightarrow s Y_{(s)}-y(0)=X(s) \\
& 1,
\end{aligned}
$$

$$
\begin{aligned}
& s^{2} X-s=Y \\
& s Y-1=X \quad
\end{aligned} \quad \begin{aligned}
& s^{2} X-Y=s \\
& \\
& s Y+s Y=1
\end{aligned}
$$

In matrix format

$$
\begin{aligned}
& {\left[\begin{array}{cc}
s^{2} & -1 \\
-1 & s
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{l}
s \\
1
\end{array}\right]} \\
& A=\left[\begin{array}{cc}
s^{2} & -1 \\
-1 & s
\end{array}\right] \quad \operatorname{dt}(A)=s^{3}-1 \\
& A_{X}=\left[\begin{array}{cc}
s & -1 \\
1 & s
\end{array}\right] \quad \operatorname{det}\left(A_{X}\right)=s^{2}+1 \\
& A_{Y}=\left[\begin{array}{cc}
s^{2} & s \\
-1 & 1
\end{array}\right] \quad \operatorname{det}\left(A_{Y}\right)=s^{2}+s
\end{aligned}
$$

$$
\begin{aligned}
& X(s)=\frac{\operatorname{dat}\left(A_{x}\right)}{d+t(A)}=\frac{s^{2}+1}{s^{3}-1} \\
& Y(s)=\frac{\operatorname{dat}\left(A_{y}\right)}{d+t(A)}=\frac{s^{2}+s}{s^{3}-1} \\
& X(s)=\frac{s^{2}+1}{(s-1)\left(s^{2}+s+1\right)}=\frac{A}{s-1}+\frac{B s+C}{s^{2}+s+1} \\
& \Psi(s)=\frac{s^{2}+s}{(s-1)\left(s^{2}+s+1\right)}=\frac{D=\frac{2}{3}}{s-1}, B=\frac{1}{3}, C=\frac{-1}{3} \\
& s^{2}+s+1
\end{aligned}
$$

Complete the square

$$
s^{2}+s(t)=s^{2}+s+\frac{1}{4}-\frac{1}{4}+1=\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}
$$

We also need $s+\frac{1}{2}$ for each s.

$$
\begin{aligned}
& X(s)=\frac{2 / 3}{s-1}+\frac{1}{3} \frac{s+\frac{1}{2}}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}-\frac{1}{\sqrt{3}} \frac{\frac{\sqrt{3}}{2}}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} \\
& Y(s)=\frac{2 / 3}{s-1}+\frac{1}{3} \frac{s+\frac{1}{2}}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}+\frac{1}{\sqrt{3}} \frac{\frac{\sqrt{3}}{2}}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{s+\frac{1}{2}}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right\}=e^{-\frac{1}{2} t} \mathcal{L}^{-1}\left[\frac{s}{s^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right\} \\
& =e^{\frac{-1}{2} t} \operatorname{Cos}\left(\frac{\sqrt{3}}{2} t\right) \\
& \mathscr{L}^{-1}\left\{\frac{\sqrt{3} / 2}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right\}=e^{-\frac{1}{2} t \mathcal{L}^{-1}}\left\{\frac{\frac{\sqrt{3}}{2}}{s^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right) \\
& \begin{aligned}
&=e^{-\frac{1}{2} t} \sin \left(\frac{\sqrt{3}}{2} t\right)_{\frac{\sqrt{3}}{2}} \\
& X(s)=\frac{2 / 3}{s-1}+\frac{1}{3} \frac{s+\frac{1}{2}}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}-\frac{1}{\sqrt{3}} \frac{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}{(s)}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& x(t)=\frac{2}{3} e^{t}+\frac{1}{3} e^{-\frac{1}{2} t} \cos \left(\frac{\sqrt{3}}{2} t\right)-\frac{1}{\sqrt{3}} e^{-\frac{1}{2} t} \sin \left(\frac{\sqrt{3}}{2} t\right) \\
& y(t)=\frac{2}{3} e^{t}+\frac{1}{3} e^{-\frac{1}{2} t} \cos \left(\frac{\sqrt{3}}{2} t\right)+\frac{1}{\sqrt{3}} e^{-\frac{1}{2} t} \sin \left(\frac{\sqrt{3}}{2} t\right)
\end{aligned}
$$

There solution to the WP

Convolutions

Consider the problem of evaluating the inverse Laplace transform

$$
\mathscr{L}^{-1}\left\{\frac{1}{s^{2}+8 s+15}\right\} .
$$

We know that $\frac{1}{s^{2}+8 s+15}=\frac{1}{s+3} \cdot \frac{1}{s+5}$, but since

$$
\mathscr{L}^{-1}\{F(s) G(s)\} \neq \mathscr{L}^{-1}\{F(s)\} \cdot \mathscr{L}^{-1}\{G(s)\}
$$

writing this product isn't immediately useful. We perform a partial fraction decomposition to write it as a sum.

Remark: There is a meaningful way to evaluate the inverse of a product $\mathscr{L}^{-1}\{F(s) G(s)\}$. It involves a special kind of product called a convolution.

Convolutions

Definition

Let f and g be piecewise continuous on $[0, \infty)$ and of exponential order. The convolution of f and g is denoted by $f * g$ and is defined by

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Remark: It can readily be shown that $f * g=g * f$. That is, the convolution is commutative.

Example
Let $f(t)=e^{-3 t}$ and $g(t)=e^{-5 t}$. Evaluate $f * g$.

$$
\begin{aligned}
(f * g)(t) & =\int_{0}^{t} f(\tau) g(t-\tau) d \tau \\
f(\tau) & =e^{-3 \tau}, g(t-\tau)=e^{-s(t-\tau)} \\
(f * g)(t) & =\int_{0}^{t} e^{-3 \tau} e^{-s(t-\tau)} d \tau \\
& =\int_{0}^{t} e^{-3 \tau} e^{-5 t} e^{5 \tau} d \tau
\end{aligned}
$$

$$
\begin{aligned}
= & e^{-5 t} \int_{0}^{t} e^{-3 \tau} e^{5 \tau} d \tau \\
= & e^{-5 t} \int_{0}^{t} e^{2 \tau} d \tau \\
= & e^{-5 t}\left[\left.\frac{1}{2} e^{2 \tau}\right|_{0} ^{t}=e^{-5 t}\left[\frac{1}{2} e^{2 t}-\frac{1}{2} e^{0}\right]\right. \\
= & \frac{1}{2} e^{-5 t} e^{2 t}-\frac{1}{2} e^{-5 t} \\
(f * s)(t) & =\frac{1}{2} e^{-3 t}-\frac{1}{2} e^{-5 t} \\
& f(t)=e^{-3 t}, \delta(t)=e^{-5 t}
\end{aligned}
$$

Laplace Transforms \& Convolutions

Theorem

Suppose $\mathscr{L}\{f(t)\}=F(s)$ and $\mathscr{L}\{g(t)\}=G(s)$. Then

$$
\mathscr{L}\{f * g\}=F(s) G(s)
$$

Theorem

Suppose $\mathscr{L}^{-1}\{F(s)\}=f(t)$ and $\mathscr{L}^{-1}\{G(s)\}=g(t)$. Then

$$
\mathscr{L}^{-1}\{F(s) G(s)\}=(f * g)(t)
$$

Example
Use the convolution to evaluate

$$
\begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{1}{s^{2}+8 s+15}\right\}=\mathscr{L}^{-1}\left\{\left(\frac{1}{s+3}\right)\left(\frac{1}{s+5}\right)\right\} \\
& F(s)=\frac{1}{s+3}, F(s)=\mathscr{L}\left\{e^{-3 t}\right\} \quad f(t)=e^{-3 t} \\
& G(s)=\frac{1}{s+5}, G(s)=\mathscr{L}\left\{e^{-s t}\right\} \quad G(t)=e^{-s t}
\end{aligned}
$$

By our theorem

$$
\mathcal{L}^{-1}\{F(s) G(s))=(f * g)(t)
$$

$$
\begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{1}{s^{2}+8 s+15}\right\}=\mathscr{L}^{-1}\left\{\left(\frac{1}{s+3}\right)\left(\frac{1}{s+5}\right)\right\} \\
&=\left(f w^{\prime} g\right)(t) \\
&=\int_{0}^{t} e^{-3 \tau} e^{-s(t-c)} d \tau \\
&=\frac{1}{2} e^{-3 t}-\frac{1}{2} e^{-s t}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathscr{L}\left\{\int_{0}^{t} \tau^{6} e^{-4(t-\tau)} d \tau\right\} \\
& \int_{0}^{t} \tau^{6} e^{-4(t-\tau)} d \tau=(f * g)(t) \\
& f(\tau)=\tau^{6} \Rightarrow f(t)=t^{6} \\
& g(t-\tau)=e^{-4(6-\tau)} \quad g(t)=e^{-4 t}
\end{aligned}
$$

$$
\begin{aligned}
F(s) & =\mathscr{L}\left\{t^{6}\right)=\frac{6!}{s^{7}} \\
G(s) & =\mathcal{L}\left\{e^{-4 t}\right)=\frac{1}{s+4} \\
\mathscr{L}\left\{\int_{0}^{t} \tau^{6} e^{-4(t-\tau)} d \tau\right\} & =\frac{6!}{s^{7}}\left(\frac{1}{s+4}\right) \\
& =\frac{6!}{s^{7}(s+4)}
\end{aligned}
$$

