April 24 Math 2306 sec. 52 Spring 2023

Section 16: Laplace Transforms of Derivatives and IVPs

Solving a System: We can solve a system of ODEs using Laplace
transforms. Here, we’ll consider systems that are

> linear,
» having initial conditions at t = 0, and

» constant coefficient.

Let’s see it in action (i.e. with a couple of examples).
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Example

Use the Laplace transform to solve the system of equations

X'(t) = y, x(0)=1, Xx(0)=0
yit) = x, y(0)=

We took the transforms letting X = Z{x(t)} and Y = Z{y(t)}, and
used Cramer’s rule to get to

s° +1 s% +1
X(s) = F—F=7— 5
s—1 (s—1)(s?+s+1)
2
Y(s) — s“+s s(s+1)

-1 (s—1)(s?+s+1)
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Convolutions

Consider the problem of evaluating the inverse Laplace transform

1
—1 s
< {52+8$+15}'

1 1
s2185+15 s+3 s+5

2 HF(s)G(s)} # 27 {F(s)} -2 {G(s)}

We know that but since

writing this product isn’t immediately useful. We perform a partial
fraction decomposition to write it as a sum.

Remark: There is a meaningful way to evaluate the inverse of a
product .Z~"{F(s)G(s)}. It involves a special kind of product called a
convolution.
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Convolutions

Let f and g be piecewise continuous on [0, c) and of exponential

order. The convolution of f and g is denoted by f« g and is
defined by

(fxg)(t /f g(t—71)dr

Remark: It can readily be shown that f « g = g « f. That is, the
convolution is commutative.
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Example

Let f(t) = e 3t and g(t) = e~ .. Evaluate f  g.

(F=9g)(t /f (t—7)d
-5 (£-0)

-3
Per- " , 9~ @

t ot
<?x9)(£)‘- S e'k éﬂ(é 3CJ‘C,

L
- e -9t g%
e e e JdT

o
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Laplace Transforms & Convolutions

Suppose Z{f(t)} = F(s) and £{g(t)} = G(s). Then

Z{fxg} = F(s)G(s)

Suppose £~ 1{F(s)} = f(t) and £~ '{G(s)} = g(t). Then

27 {F(9)G(s)} = (f = g)(1)

CIRT-= = E = 9ac
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Example
Use the convolution to evaluate

Measrs) 2 {(53) (535))

Lex F@{ﬁT = {e_%\

3%
Lx {= e
L)
G(S) = g+5 N i Eﬂe;*
L 3(:1517— c

ZH{F(9)G(s)} = (F*g)(1)
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Example

t
.,2”{/ r8e=4(t=7) dT}
0

10 L= < fo- €7

-u(e-1) - £
9lt-<)= e > glb- ¢

ZL{fxg} = F(s)G(s)
G!
Ly T - LIER)- 2t = =7
I
Ge) =4 (3l631 jfc‘%} T oY
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Example
Use a convolution to evaluate'

Naarp) - L L5 5
= (Fxp
R T N S L

(&r \/“\C{, W§Q>

_t
Y L= e
tw:t (&

'For comparison, a partial fraction decomp would give
1 1 1 1

S =<t +—
2 2
s (S+ 1) s s s+1 April 21, 2023
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Transfer Function & Impulse Response

ay” + by’ +cy = g(t), (1)

Definition

1

The function H(s) = ————— is called the transfer function
_ _ asc+bs+c

for the differential equation (1).

The impulse response function, h(t), for the differential equa-
tion (1) is the inverse Laplace transform of the transfer function

h(t) = 2" {H(s)} = & {as2+1bs+c} .

April 21, 2023 23/26



Transfer Function & Impulse Response

ay” + by’ +cy =g(t)

Remark 1: The transfer function is the Laplace transform of the
solution to the IVP

ay” + by’ + cy =4(t), y(0)=0, y'(0)=0.

Remark 2: The impulse response is the solution to the IVP

ay” + by’ + cy =4(t), y(0)=0, y'(0)=0.
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Convolution
Consider
ay"+by' +cy=9(t), y(0)=yo, y(0)=y

Recall the zero state response is the inverse transform

G : , ,
7 {2(3)} Note that we can write this ratio as the product
as®+bs+c

G(s)H(s)

where H is the transfer function. If the impulse response is h(t), then
the zero state response can be written in terms of a convolution is

271{G(s) }/g h(t—r)d
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