April 22 Math 3260 sec. 51 Spring 2024

Section 6.4: Gram-Schmidt Orthogonalization

We saw that the orthogonal decomposition theorem says that if W is a nonzero subspace of \mathbb{R}^{n}. Each vector \mathbf{y} in \mathbb{R}^{n} can be written uniquely as a sum

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp}.
We have a formula for computing $\operatorname{proj}_{w} \mathbf{y}$, but it requires an orthogonal basis for W.

Big Question:

Given any-old basis for a subspace W of \mathbb{R}^{n}, can we construct an orthogonal basis for that same space?

Theorem: Gram Schmidt Process

Let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ be any basis for the nonzero subspace W of \mathbb{R}^{n}. Define the set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ via

$$
\begin{aligned}
\mathbf{v}_{1} & =\mathbf{x}_{1} \\
\mathbf{v}_{2} & =\mathbf{x}_{2}-\left(\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} \\
\mathbf{v}_{3} & =\mathbf{x}_{3}-\left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}-\left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2} \\
& \vdots \\
\mathbf{v}_{p} & =\mathbf{x}_{p}-\sum_{j=1}^{p-1}\left(\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{j}}{\mathbf{v}_{j} \cdot \mathbf{v}_{j}}\right) \mathbf{v}_{j} .
\end{aligned}
$$

Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthogonal basis for W. Moreover, for each $k=1, \ldots, p$
$\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$.

Example
Find an orthonormal (that's orthonormal not just orthogonal) basis for Col A where $A=\left[\begin{array}{ccc}-1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3\end{array}\right] . \quad \operatorname{rret}(A)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$

The columns form a basis for $\operatorname{col}(A)$.

$$
\text { Let } \vec{x}_{1}=\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right], \quad \dot{x}_{2}=\left[\begin{array}{c}
6 \\
-8 \\
-2 \\
-4
\end{array}\right], \vec{x}_{3}=\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right]
$$

Apply Gram schmidt.

$$
\vec{V}_{1}=\vec{x}_{1}=\left[\begin{array}{r}
-1 \\
3 \\
1 \\
1
\end{array}\right]
$$

$$
\begin{gathered}
\vec{V}_{2}=\vec{X}_{2}-\frac{\vec{X}_{2} \cdot \vec{V}_{1}}{\vec{V}_{1} \cdot \vec{V}_{1}} \vec{V}_{1} \\
\vec{X}_{2} \cdot \vec{V}_{1}=-6-24-2-4=-36 \\
\vec{V}_{1} \cdot \vec{V}_{1}=(-1)^{2}+3^{2}+1^{2}+1^{2}=12 \\
\\
\vec{V}_{2}=\left[\begin{array}{c}
6 \\
-8 \\
-2 \\
-4
\end{array}\right]-\frac{-36}{12}\left[\begin{array}{r}
-1 \\
3 \\
1 \\
1
\end{array}\right] \\
{\left[\begin{array}{c}
6 \\
-3 \\
-2 \\
-4
\end{array}\right]+3\left[\begin{array}{r}
-1 \\
3 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
3 \\
1 \\
1 \\
-1
\end{array}\right]}
\end{gathered}
$$

$$
\begin{aligned}
& \vec{V}_{3}=\vec{x}_{3}-\frac{\vec{x}_{3} \cdot \vec{V}_{1}}{\vec{V}_{1} \cdot \vec{V}_{1}} \vec{V}_{1}-\frac{\vec{x}_{3} \cdot \vec{V}_{2}}{\vec{V}_{2} \cdot \vec{V}_{2}} \vec{V}_{2} \\
& \vec{x}_{3} \cdot \vec{V}_{1}=-6+9+6-3=6 \\
& \vec{V}_{1} \cdot \vec{V}_{1}=12 \\
& \vec{x}_{3} \cdot \vec{V}_{2}=18+3+6+3=30 \\
& \vec{V}_{2} \cdot \vec{V}_{2}=3^{2}+1^{2}+1^{2}+(-1)^{2}=12 \\
& \vec{V}_{3}=\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right]-\frac{6}{12}\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right]-\frac{30}{12}\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right]-\frac{5}{2}\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& 6+\frac{1}{2}-\frac{15}{2}=6-\frac{14}{2}=-1 \\
& 3-\frac{3}{2}-\frac{5}{2}=3-\frac{8}{2}=-1 \\
& 6-\frac{1}{2}-\frac{5}{2}=6-\frac{6}{2}=3 \\
& -3-\frac{1}{2}+\frac{5}{2}=-3+\frac{4}{2}=-1
\end{aligned}
$$

New basis:

$$
\begin{array}{ll}
\vec{V}_{1}=\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right], \vec{V}_{2}=\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right] \quad \vec{V}_{1} \cdot \vec{V}_{2}=-3+3+ \\
\vec{V}_{3}=\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-1
\end{array}\right] \quad \vec{V}_{1} \cdot \vec{V}_{3}=1-3+3-1=0 \\
\vec{V}_{2} \cdot \vec{V}_{3}=-3-1+3+1=0
\end{array}
$$

An orthogind basis for $\operatorname{Col}(A)$ is $\left\{\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}\right\}$

To get an orthonornd basis, we normal ie \vec{V}_{i}

$$
\left\|\vec{v}_{i}\right\|=\sqrt{12} \quad \text { for } \quad i=1,2,3
$$

Let $\vec{w}_{1}=\frac{1}{\sqrt{12}}\left[\begin{array}{c}3 \\ 1 \\ 1 \\ -1\end{array}\right], \vec{w}_{2}=\frac{1}{\sqrt{12}}\left[\begin{array}{c}3 \\ 1 \\ 1 \\ -1\end{array}\right]$
and $\quad \vec{W}_{3}=\frac{1}{\sqrt{12}}\left[\begin{array}{c}-1 \\ -1 \\ 3 \\ -1\end{array}\right]$.
An orthonormal basis is $\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$.

