April 25 Math 3260 sec. 51 Spring 2022

Section 6.2: Orthogonal Sets

Definition: (Orthogonal Matrix) A square matrix U is called an
orthogonal matrix if U7 = U~".

Theorem: An n x n matrix U is orthogonal if and only if it’s columns
form an orthonormal basis of R".

The linear transformation associated to an orthogonal matrix
preserves lenghts and angles in the following sense:
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Theorem: Orthogonal Matrices

Let U be an n x n orthogonal matrix and x and y vectors in R". Then
(@) 1Ux]| = [)x]|
(b) (Ux)-(Uy) = x-vy,in particular

(c) (Ux)-(Uy) = Oifandonlyifx-y = 0.
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Proof of (a)

Show that if U is an n x n orthogonal matrix and x is any vector in R”,

then [[Ux|| = [|x[|.
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Section 6.3: Orthogonal Projections
Equating points with position vectors, we may wish to find the point y in
a subspace W of R" that is closestto a given point y.

y

>

Figure: lllustration of an orthogonal projection. Note that dist(y, ¥) is the
shortest distance between y and the points on W.
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Orthogonal Decomposition Theorem
Let W be a subspace of R". Each vector y in R” can be written
uniquely as a sum

y=y+z
where y isin W and zis in W+,
If {uq,...,up} is any orthogonal basis for W, then

)
a y-u . N
yjzz;(uj'u) u, and z=y-¥.

The formula for y looks just like the projection onto a line, but with
more terms. That is,

o (YU y-w y-Up
v <U1'U1>u1+<uz'uz>u2+ +<Up'up>up
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Orthogonal Decomposition Theorem

Remark 1: Note that the basis must be orthogonal, but otherwise the
vector y is independent of the particular basis used!

Remark 2: The vector y is called the orthogonal projection of y onto

W. We can denote it
Projy Y-

Remark 3: All you really have to do is remember how to project onto a

line. Notice that
oy (YW
projy, Y = T uq.

If W = Span{uy,...,up} with the u’s orthogonal, then

Projy Y = projy, Y + projy, Y + - - + projy, Y.
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Example
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(a) Verify that the spanning vectors for W given are an orthogonal
basis for W.
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Example Continued...
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(b) Find the orthogonal projection of y onto W.
N Y
P = W Wo W W

T

-eo‘z,%\ = 2 (4>« 1 (a) + 2L = IR
74"@. - 2%+ 1T U= 9
W = —z(yw 2@+ 1 =g

3 1 T
W, W. = (U T 1= 9
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(c) Find the shortest distance between y and the subspace W.
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Computing Orthogonal Projections

Theorem: If {uy,...,up} is an orthonormal basis of a subspace W of
R", and y is any vector in R" then

p
proj y = _ (y-uj) u;.
j=1

And, if Uis the matrix U =[uy --- up], then the above is equivalent
to
proj,y y = UUTy.

Remark: In general, U is not square; it's n x p. So even though UUT
will be a square matrix, it is not the same matrix as U U and it is not
the identity matrix.
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Example

(] 1]}

Find an orthonormal basis {uq,u2} for W. Then compute the matrices
UTU and UUT where U = [u; uy].
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Example

([ 3]} o

Use the matrix formulation to find proj, y.

P,y s UU
: ¢)s “*)a  Yq
a fla 4 §

April 22, 2022

16/29



— cO C

April 22, 2022

17/29



