April 25 Math 3260 sec. 51 Spring 2022

Section 6.2: Orthogonal Sets

Definition: (Orthogonal Matrix) A square matrix U is called an orthogonal matrix if $U^{\top}=U^{-1}$.

Theorem: An $n \times n$ matrix U is orthogonal if and only if it's columns form an orthonormal basis of \mathbb{R}^{n}.

The linear transformation associated to an orthogonal matrix preserves lenghts and angles in the following sense:

Theorem: Orthogonal Matrices

Let U be an $n \times n$ orthogonal matrix and \mathbf{x} and \mathbf{y} vectors in \mathbb{R}^{n}. Then
(a) $\|U \mathbf{x}\|=\|\mathbf{x}\|$
(b) $(U \mathbf{x}) \cdot(U \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$, in particular
(c) $(U \mathbf{x}) \cdot(U \mathbf{y})=0$ if and only if $\mathbf{x} \cdot \mathbf{y}=0$.

Proof of (a)
Show that if U is an $n \times n$ orthogonal matrix and \mathbf{x} is any vector in \mathbb{R}^{n}, then $\|U \mathbf{x}\|=\|\mathbf{x}\|$.

Real: (1) $\vec{u} \cdot \vec{v}=\vec{u}^{\top} \vec{v}$

$$
\Leftrightarrow(A B)^{\top}=B^{\top} A^{\top}
$$

Let's show $\|U \vec{x}\|^{2}=\|\vec{x}\|^{2}$

$$
\begin{aligned}
\|U \vec{x}\|^{2} & =(u \vec{x}) \cdot(U \vec{x}) \\
& =(u \vec{x})^{\top}(u \vec{x}) \\
& =\vec{x}^{\top} \underbrace{u^{\top}}_{\tilde{I}} u \vec{x}
\end{aligned}
$$

$$
u^{\top}=u^{-1}
$$

$$
\begin{aligned}
&=\vec{x}^{\top} I \vec{x} \\
&=\vec{x}^{\top} \vec{x} \\
&=\vec{x} \cdot \vec{x}=\|\vec{x}\|^{2} \\
& \Rightarrow\|u \vec{x}\|=\|\vec{x}\|
\end{aligned}
$$

Section 6.3: Orthogonal Projections

Equating points with position vectors, we may wish to find the point $\hat{\mathbf{y}}$ in a subspace W of \mathbb{R}^{n} that is closest to a given point \mathbf{y}.

Figure: Illustration of an orthogonal projection. Note that $\operatorname{dist}(\mathbf{y}, \hat{\mathbf{y}})$ is the shortest distance between \mathbf{y} and the points on W.

Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^{n}. Each vector \mathbf{y} in \mathbb{R}^{n} can be written uniquely as a sum

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp}.
If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is any orthogonal basis for W, then

$$
\hat{\mathbf{y}}=\sum_{j=1}^{p}\left(\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}}\right) \mathbf{u}_{j}, \quad \text { and } \quad \mathbf{z}=\mathbf{y}-\hat{\mathbf{y}} .
$$

The formula for $\hat{\mathbf{y}}$ looks just like the projection onto a line, but with more terms. That is,

$$
\hat{\mathbf{y}}=\left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1}+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}\right) \mathbf{u}_{2}+\cdots+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}}\right) \mathbf{u}_{p}
$$

Orthogonal Decomposition Theorem

Remark 1: Note that the basis must be orthogonal, but otherwise the vector $\hat{\mathbf{y}}$ is independent of the particular basis used!

Remark 2: The vector $\hat{\mathbf{y}}$ is called the orthogonal projection of \mathbf{y} onto W. We can denote it

$$
\operatorname{proj}_{w} \mathbf{y} .
$$

Remark 3: All you really have to do is remember how to project onto a line. Notice that

$$
\operatorname{proj}_{\mathbf{u}_{1}} \mathbf{y}=\left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1} .
$$

If $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ with the u's orthogonal, then

$$
\operatorname{proj}_{W} \mathbf{y}=\operatorname{proj}_{\mathbf{u}_{1}} \mathbf{y}+\operatorname{proj}_{\mathbf{u}_{2}} \mathbf{y}+\cdots+\operatorname{proj}_{\mathbf{u}_{p}} \mathbf{y} .
$$

Example

Let $\mathbf{y}=\left[\begin{array}{l}4 \\ 8 \\ 1\end{array}\right]$ and

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]\right\} .=\left\{\vec{w}_{1}, \vec{w}_{2}\right\} .
$$

(a) Verify that the spanning vectors for W given are an orthogonal basis for W.

$$
\begin{aligned}
& \vec{w} \cdot \vec{w}_{2}=2(-2)+1(2)+2(1)=-4+2+2=0 \\
& \text { so } \vec{w}_{1} \text { ad } \vec{w}_{2} \text { are orthogonal. }
\end{aligned}
$$

Example Continued...

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
\vec{w}_{1} \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]\right\} \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{l}
4 \\
8 \\
1
\end{array}\right]
$$

(b) Find the orthogonal projection of \mathbf{y} onto W.

$$
\begin{aligned}
& \operatorname{proj}_{w} \vec{y}=\frac{\vec{y}^{\prime} \cdot \vec{w}_{1}}{\vec{w}_{1} \cdot \vec{w}_{1}} \vec{w}_{1}+\frac{\vec{y} \cdot \vec{w}_{2}}{\vec{w}_{2} \cdot \vec{w}_{2}} \vec{w}_{2} \\
& \vec{y} \cdot \vec{w}_{1}=2(4)+1(g)+2(1)=18 \\
& \vec{w}_{1} \cdot \vec{w}_{1}=2^{2}+1^{2}+z^{2}=9 \\
& \vec{y} \cdot \vec{w}_{2}=-2(4)+2(8)+1 \cdot 1=9 \\
& \vec{w}_{2} \cdot \vec{w}_{2}=(-2)^{2}+z^{2}+1^{2}=9
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{proj}_{w} \vec{v}=\frac{18}{9} \vec{w}_{1}+\frac{9}{9} \vec{w}_{2}=2 \vec{w}_{1}+1 \vec{w}_{2} \\
&=2\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]+1\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right] \\
&=\left[\begin{array}{l}
2 \\
4 \\
5
\end{array}\right] \\
& \vec{y}=\left[\begin{array}{l}
4 \\
8 \\
1
\end{array}\right]
\end{aligned}
$$

(c) Find the shortest distance between y and the subspace W.

$$
\begin{aligned}
& \operatorname{dis} t(\vec{y}, \hat{y})=\|\vec{z}\| \text { if } \vec{z}=\vec{y}-\hat{y} \\
& \vec{y}=\left[\begin{array}{l}
4 \\
8 \\
1
\end{array}\right], \hat{y}=\left[\begin{array}{l}
2 \\
4 \\
5
\end{array}\right] \\
& \vec{z}=\left[\begin{array}{l}
4 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{l}
2 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{c}
2 \\
4 \\
-4
\end{array}\right] \\
& \operatorname{dist}(\vec{y}, \hat{y})=\sqrt{2^{2}+4^{2}+(-4)^{2}}=\sqrt{36}=6
\end{aligned}
$$

Computing Orthogonal Projections

Theorem: If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis of a subspace W of \mathbb{R}^{n}, and \mathbf{y} is any vector in \mathbb{R}^{n} then

$$
\operatorname{proj}_{W} \mathbf{y}=\sum_{j=1}^{p}\left(\mathbf{y} \cdot \mathbf{u}_{j}\right) \mathbf{u}_{j} .
$$

And, if U is the matrix $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \cdots & \mathbf{u}_{p}\end{array}\right]$, then the above is equivalent to

$$
\operatorname{proj}_{W} \mathbf{y}=U U^{T} \mathbf{y} .
$$

Remark: In general, U is not square; it's $n \times p$. So even though $U U^{\top}$ will be a square matrix, it is not the same matrix as $U^{\top} U$ and it is not the identity matrix.

Example

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]\right\}=\left\{\stackrel{\rightharpoonup}{w}_{1}, \vec{w}_{2}\right\}
$$

Find an orthonormal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ for W. Then compute the matrices $U^{\top} U$ and $U U^{\top}$ where $U=\left[\begin{array}{ll}\mathbf{u}_{1} & \mathbf{u}_{2}\end{array}\right]$.

$$
\begin{array}{cc}
\vec{w}_{1} \cdot \vec{w}_{1}=\vec{w}_{2} \cdot \vec{w}_{2}=9 \Rightarrow & \left\|\vec{w}_{1}\right\|=\left\|\vec{w}_{2}\right\|=3 \\
\vec{u}_{1}=\frac{1}{\left\|\vec{w}_{1}\right\|} \vec{w}_{1}=\left[\begin{array}{l}
2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right], \vec{u}_{2}=\frac{1}{\left\|\vec{w}_{2}\right\|} \vec{w}_{2}=\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right] \\
U=\left[\begin{array}{cc}
2 / 3 & -2 / 3 \\
1 / 3 & 2 / 3 \\
2 / 3 & 1 / 3
\end{array}\right] & U^{\top}=\left[\begin{array}{ccc}
2 / 3 & 1 / 3 & 2 / 3 \\
-2 / 3 & 2 / 3 & 1 / 3
\end{array}\right]
\end{array}
$$

$$
\left.\begin{array}{rl}
U^{\top} U & =\left[\begin{array}{ccc}
2 / 3 & 1 / 3 & 2 / 3 \\
2 \times 3 & 3 \times 2 & 2 / 3
\end{array} 1 / 3\right.
\end{array}\right]\left[\begin{array}{cc}
2 / 3 & -2 / 3 \\
1 / 3 & 2 / 3 \\
2 / 3 & 1 / 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\left(u u^{\top}\right)^{\top}=\left(u^{\top}\right)^{\top} u^{\top}=u u^{\top}
$$

Example

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]\right\} \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{l}
4 \\
8 \\
1
\end{array}\right]
$$

Use the matrix formulation to find $\operatorname{proj}_{w} \mathbf{y}$.

$$
\begin{aligned}
\text { proj}_{w} \vec{y} & =U U^{\top} \vec{y} \\
& =\left[\begin{array}{ccc}
8 / 9 & -2 / 9 & 2 / 9 \\
-2 / 9 & 5 / 9 & 4 / 9 \\
2 / 9 & 4 / 9 & 5 / 9
\end{array}\right]\left[\begin{array}{l}
4 \\
8 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{9}\left[\begin{array}{ccc}
8 & -2 & 2 \\
-2 & 5 & 4 \\
2 & 4 & 5
\end{array}\right]\left[\begin{array}{l}
4 \\
0 \\
1
\end{array}\right] \\
& =\frac{1}{9}\left[\begin{array}{l}
18 \\
36 \\
45
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \\
4 \\
5
\end{array}\right]
\end{aligned}
$$

