
April 25 Math 3260 sec. 52 Spring 2022

Section 6.2: Orthogonal Sets

Definition: (Orthogonal Matrix) A square matrix U is called an
orthogonal matrix if UT = U−1.

Theorem: An n × n matrix U is orthogonal if and only if it’s columns
form an orthonormal basis of Rn.

The linear transformation associated to an orthogonal matrix
preserves lenghts and angles in the following sense:
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Theorem: Orthogonal Matrices

Let U be an n × n orthogonal matrix and x and y vectors in Rn. Then

(a) ‖Ux‖ = ‖x‖

(b) (Ux) · (Uy) = x · y, in particular

(c) (Ux) · (Uy) = 0 if and only if x · y = 0.
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Example

Find an orthogonal matrix of the form U =


2
3

1√
2

a
2
3 − 1√

2
b

1
3 0 c

.
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Section 6.3: Orthogonal Projections
Equating points with position vectors, we may wish to find the point ŷ in
a subspace W of Rn that is closest to a given point y.

Figure: Illustration of an orthogonal projection. Note that dist(y, ŷ) is the
shortest distance between y and the points on W .
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Orthogonal Decomposition Theorem
Let W be a subspace of Rn. Each vector y in Rn can be written
uniquely as a sum

y = ŷ + z

where ŷ is in W and z is in W⊥.

If {u1, . . . ,up} is any orthogonal basis for W , then

ŷ =

p∑
j=1

(
y · uj

uj · uj

)
uj , and z = y− ŷ.

The formula for ŷ looks just like the projection onto a line, but with
more terms. That is,

ŷ =

(
y · u1

u1 · u1

)
u1 +

(
y · u2

u2 · u2

)
u2 + · · ·+

(
y · up

up · up

)
up
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Orthogonal Decomposition Theorem
Remark 1: Note that the basis must be orthogonal, but otherwise the
vector ŷ is independent of the particular basis used!

Remark 2: The vector ŷ is called the orthogonal projection of y onto
W . We can denote it

projW y.

Remark 3: All you really have to do is remember how to project onto a
line. Notice that

proju1
y =

(
y · u1

u1 · u1

)
u1.

If W = Span{u1, . . . ,up} with the u’s orthogonal, then

projW y = proju1
y + proju2

y + · · ·+ projup y.

April 22, 2022 8 / 30



Example

Let y =

 4
8
1

 and

W = Span


 2

1
2

 ,

 −2
2
1

 .

(a) Verify that the spanning vectors for W given are an orthogonal
basis for W .
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Example Continued...

W = Span


 2

1
2

 ,

 −2
2
1

 and y =

 4
8
1


(b) Find the orthogonal projection of y onto W .
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(c) Find the shortest distance between y and the subspace W .
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Computing Orthogonal Projections
Theorem: If {u1, . . . ,up} is an orthonormal basis of a subspace W of
Rn, and y is any vector in Rn then

projW y =

p∑
j=1

(
y · uj

)
uj .

And, if U is the matrix U = [u1 · · · up], then the above is equivalent
to

projW y = UUT y.

Remark: In general, U is not square; it’s n × p. So even though UUT

will be a square matrix, it is not the same matrix as UT U and it is not
the identity matrix.
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Example

W = Span


 2

1
2

 ,

 −2
2
1


Find an orthonormal basis {u1,u2} for W . Then compute the matrices
UT U and UUT where U = [u1 u2].
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Example

W = Span


 2

1
2

 ,

 −2
2
1

 and y =

 4
8
1


Use the matrix formulation to find projW y.
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