April 26 Math 2306 sec. 51 Spring 2023

Section 16: Laplace Transforms of Derivatives and IVPs

Definition

Let f and g be piecewise continuous on $[0, \infty)$ and of exponential order. The convolution of f and g is denoted by $f * g$ and is defined by

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Remark: It can readily be shown that $f * g=g * f$. That is, the convolution is commutative.

Laplace Transforms \& Convolutions

Theorem
Suppose $\mathscr{L}\{f(t)\}=F(s)$ and $\mathscr{L}\{g(t)\}=G(s)$. Then

$$
\mathscr{L}\{f * g\}=F(s) G(s)
$$

Theorem

Suppose $\mathscr{L}^{-1}\{F(s)\}=f(t)$ and $\mathscr{L}^{-1}\{G(s)\}=g(t)$. Then

$$
\mathscr{L}^{-1}\{F(s) G(s)\}=(f * g)(t)
$$

Example: Use a convolution to evaluate

$$
\mathscr{L}^{-1}\left\{\frac{1}{s^{2}(s+1)}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s^{2}}\left(\frac{1}{s+1}\right)\right\}
$$

Let $F(s)=\frac{1}{s^{2}}, F(s)=\mathscr{L}\{t\}, f(t)=t$

$$
\begin{gathered}
G(s)=\frac{1}{s+1}, G(s)=\mathscr{L}\left\{e^{-t}\right\}, g(t)=e^{-t} \\
\mathscr{L}^{-1}\{F(s) G(s)\}=(f * g)(t)
\end{gathered}
$$

The argument would have partial fraction decomp $\frac{1}{s^{2}(s+1)}=-\frac{1}{s}+\frac{1}{s^{2}}+\frac{1}{s+1}$.

$$
\begin{aligned}
& (f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau=\int_{0}^{t} \tau e^{-(t-\tau)} d \tau . \\
& (g * f)(t)=\int_{0}^{t} g(\tau) f(t-\tau) d \tau=\int_{0}^{t} e^{-\tau}(t-\tau) d \tau
\end{aligned}
$$

well do the $1^{\text {st }}$ one.

$$
\begin{array}{rlrl}
(f * g)(t) & =\int_{0}^{t} \tau e^{-t} e^{\tau} d \tau & \\
& =e^{-t} \int_{0}^{t} \tau e^{\tau} d \tau & u=\tau & d u=d \tau \\
& =e^{-t}\left(\left.\tau e^{\tau}\right|_{0} ^{t}-\int_{0}^{t} e^{\tau} d \tau\right) & v=e^{\tau} \quad \partial v=e^{\tau} d \tau \\
& =e^{-t}\left(t e^{t}-0 e^{0}-\left.e^{\tau}\right|_{0} ^{t}\right. & &
\end{array}
$$

$$
\begin{gathered}
=e^{-t}\left(t e^{t}-e^{t}+e^{0}\right) \\
=t-1+e^{-t} \\
\mathcal{L}^{-1}\left[\frac{1}{s^{2}(s+1)}\right]=t-1+e^{-t}
\end{gathered}
$$

Transfer Function \& Impulse Response

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=g(t) \tag{1}
\end{equation*}
$$

Definition

The function $H(s)=\frac{1}{a s^{2}+b s+c}$ is called the transfer function for the differential equation (1).

Definition

The impulse response function, $h(t)$, for the differential equation (1) is the inverse Laplace transform of the transfer function

$$
h(t)=\mathscr{L}^{-1}\{H(s)\}=\mathscr{L}^{-1}\left\{\frac{1}{a s^{2}+b s+c}\right\}
$$

Transfer Function \& Impulse Response

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

Remark 1: The transfer function is the Laplace transform of the solution to the IVP

$$
a y^{\prime \prime}+b y^{\prime}+c y=\delta(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Remark 2: The impulse response is the solution to the IVP

$$
a y^{\prime \prime}+b y^{\prime}+c y=\delta(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Convolution

Consider

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
$$

Recall the zero state response is the inverse transform
$\mathscr{L}^{-1}\left\{\frac{G(s)}{a s^{2}+b s+c}\right\}$. Note that we can write this ratio as the product

$$
G(s) H(s)
$$

where H is the transfer function. If the impulse response is $h(t)$, then the zero state response can be written in terms of a convolution is

$$
\mathscr{L}^{-1}\{G(s) H(s)\}=\int_{0}^{t} g(\tau) h(t-\tau) d \tau
$$

