April 27 Math 3260 sec. 51 Spring 2022

Section 6.4: Gram-Schmidt Orthogonalization
Question: Given any-old basis for a subspace W of \mathbb{R}^{n}, can we construct an orthogonal basis for that same space?

Example: Let $W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ -1\end{array}\right]\right\}$. Find an orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ that spans W.
we need \vec{v}_{1} and \vec{v}_{2} in W. So set
$\vec{v}_{1}=a_{1} \vec{x}_{1}+a_{2} \vec{x}_{2}$ and $\vec{v}_{2}=b_{1} \vec{x}_{1}+b_{2} \vec{x}_{2}$
We hove some free dom on the $a_{1}, a_{2}, b_{1}, b_{2}$

$$
\text { set } a_{1}=1 \text { and } a_{2}=0 \Rightarrow \vec{v}_{1}=\vec{x}_{1}
$$

This makes $\operatorname{Span}\left\{\vec{v}_{1}\right\}=\operatorname{Span}\left\{\vec{x}_{1}\right\}$
For \vec{V}_{2}, we need \vec{x}_{2} so that we set all of w. Let's sat $b_{2}=1$.

$$
\begin{aligned}
& \vec{v}_{1}=\vec{x}_{1} \\
& \vec{v}_{2}=b_{1} \vec{x}_{1}+\vec{x}_{2}
\end{aligned}
$$

well find b_{1} by insisting that $\vec{V}_{1} \cdot \vec{V}_{2}=0$

$$
\vec{v}_{1} \cdot \vec{v}_{2}=\vec{x}_{1} \cdot\left(b_{1} \vec{x}_{1}+\vec{x}_{2}\right)=b_{1} \cdot \vec{x}_{1} \cdot \vec{x}_{1}+\vec{x}_{1} \cdot \vec{x}_{2}=0
$$

Solve for bi

$$
\begin{aligned}
& \text { for } b_{1} \\
& b_{1} \vec{x}_{1} \cdot \vec{x}_{1}=-\vec{x}_{1} \cdot \vec{x}_{2} \Rightarrow b_{1}=\frac{-\vec{x}_{1} \cdot \vec{x}_{2}}{\vec{x}_{1} \cdot \vec{x}_{1}}
\end{aligned}
$$

So $\vec{v}_{1}=\vec{x}_{1}$ and $\vec{v}_{2}=\vec{x}_{2}-\frac{\vec{x}_{1} \cdot \vec{x}_{2}}{\vec{x}_{1} \cdot \vec{x}_{1}} \vec{x}_{1}$
Since $\vec{x}_{1}=\vec{v}_{1}$ we can write

$$
\begin{aligned}
& \vec{v}_{1}=\vec{x}_{1} \\
& \vec{v}_{2}=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{x}_{2} \cdot \vec{V}_{1}=0-1-1=-2, \quad \vec{x}_{1} \cdot \vec{x}_{1}=1+1+1=3 \\
& \vec{V}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \vec{V}_{2}=\left[\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right]-\frac{-2}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right]+\left[\begin{array}{c}
2 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right]=\left[\begin{array}{c}
2 / 3 \\
-1 / 3 \\
-1 / 3
\end{array}\right]
\end{aligned}
$$

New basis

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
2 / 3 \\
-1 / 3 \\
-1 / 3
\end{array}\right]\right\}
$$

Theorem: Gram Schmidt Process

Let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ be any basis for the nonzero subspace W of \mathbb{R}^{n}. Define the set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ via

$$
\begin{aligned}
\mathbf{v}_{1} & =\mathbf{x}_{1} \\
\mathbf{v}_{2} & =\mathbf{x}_{2}-\left(\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} \\
\mathbf{v}_{3} & =\mathbf{x}_{3}-\left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}-\left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2} \\
& \vdots \\
\mathbf{v}_{p} & =\mathbf{x}_{p}-\sum_{j=1}^{p-1}\left(\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{j}}{\mathbf{v}_{j} \cdot \mathbf{v}_{j}}\right) \mathbf{v}_{j} .
\end{aligned}
$$

Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthogonal basis for W. Moreover, for each $k=1, \ldots, p$

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}
$$

Example
Find an orthonormal (that's orthonormal not just orthogonal) basis for Col A where $A=\left[\begin{array}{ccc}-1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3\end{array}\right]$. well start with a basis for $\operatorname{col}(A)$ Call them $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$. Let's use Gram-Schnidt to get an orthogond basis $\left\{\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}\right\}$.

$$
\vec{x}_{1}=\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right], \vec{x}_{2}=\left[\begin{array}{c}
6 \\
-8 \\
-2 \\
-4
\end{array}\right], \vec{x}_{3}=\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right]
$$

$$
\begin{aligned}
& \vec{V}_{1}=\vec{X}_{1}=\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right] \\
& \vec{V}_{2}=\vec{X}_{2}-\frac{\vec{X}_{2} \cdot \vec{V}_{1}}{\vec{V}_{1} \cdot \vec{V}_{1}} \vec{V}_{1}=\left[\begin{array}{c}
6 \\
-8 \\
-2 \\
-4
\end{array}\right]-\frac{-36}{12}\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right] \\
& \vec{X}_{2} \cdot \vec{V}_{1}=-6-24-2-4=-36 \\
& \vec{V}_{1} \cdot \vec{V}_{1}=1+9+1+1=12 \\
& \vec{V}_{2}=\left[\begin{array}{c}
6 \\
-8 \\
-2 \\
-4
\end{array}\right]+3\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right], \vec{X}_{3}=\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right] \\
& \vec{V}_{1}=\left[\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right], \vec{V}_{2}=
\end{aligned}
$$

$$
\begin{aligned}
& \vec{V}_{3}=\vec{X}_{3}-\frac{\vec{X}_{3} \cdot \vec{V}_{1}}{\vec{V}_{1} \cdot \vec{V}_{1}} \vec{V}_{1}-\frac{\vec{X}_{3} \cdot \vec{V}_{2}}{\vec{V}_{2} \cdot \vec{V}_{2}} \vec{V}_{2} \\
& \vec{X}_{3} \cdot \vec{V}_{1}=-6+9+6-3=6 \quad \vec{V}_{1} \cdot \vec{V}_{1}=12 \\
& \vec{X}_{3} \cdot \vec{V}_{2}=18+3+6+3=30 \quad \vec{V}_{2} \cdot \vec{V}_{2}=12 \\
& \vec{V}_{3}=\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right]-\frac{6}{12}\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right]-\frac{30}{12}\left[\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right] \\
&=\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right]-\frac{5}{2}\left[\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-1
\end{array}\right]
\end{aligned}
$$

Scratch:

$$
\begin{aligned}
& 6+\frac{1}{2}-\frac{15}{2}=6-\frac{14}{2}=-1 \\
& 3-\frac{3}{2}-\frac{5}{2}=3-\frac{8}{2}=-1 \\
& 6-\frac{1}{2}-\frac{5}{2}=6-\frac{6}{2}=3 \\
& -3-\frac{1}{2}+\frac{5}{2}=-3+\frac{4}{2}=-1
\end{aligned}
$$

The orthogond basis is

$$
\vec{V}_{1}=\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right], \vec{V}_{2}=\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right], \vec{V}_{3}=\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-1
\end{array}\right]
$$

To set orth norma vectors, we normalize

$$
\left\|\vec{v}_{1}\right\|^{2}=12, \quad\left\|\vec{v}_{2}\right\|^{2}=12, \quad\left\|\vec{v}_{3}\right\|^{2}=12
$$

$$
\Rightarrow \quad\left\|\vec{v}_{i}\right\|=\sqrt{12}=2 \sqrt{3}
$$

Let $\vec{w}_{i}=\frac{1}{\left\|\vec{v}_{i}\right\|} \vec{v}_{i}$

$$
\vec{w}_{1}=\left[\begin{array}{c}
\frac{-1}{\sqrt{12}} \\
\frac{3}{\sqrt{12}} \\
\frac{1}{\sqrt{12}} \\
\frac{1}{\sqrt{12}}
\end{array}\right] \quad \vec{w}_{2}=\left[\begin{array}{l}
\frac{3}{\sqrt{12}} \\
\frac{1}{\sqrt{12}} \\
\frac{1}{\sqrt{12}} \\
\frac{-1}{\sqrt{12}}
\end{array}\right], \vec{w}_{3}=\left[\begin{array}{l}
-1 / \sqrt{12} \\
-1 / \sqrt{12} \\
3 / \sqrt{12} \\
-1 / \sqrt{12}
\end{array}\right]
$$

Some Results of Gram-Schmidt Process

- $\operatorname{Span}\left\{\mathbf{v}_{1}\right\}$ is the same space as $\operatorname{Span}\left\{\mathbf{x}_{1}\right\}, \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is the same space as $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$, and in general $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is the same space as $\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$
- $\mathbf{v}_{k}=\mathbf{x}_{k}-\mathbf{p}_{k}$ where \mathbf{p}_{k} is the projection of \mathbf{x}_{k} on the subspace $\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}\right\}$
$-\mathbf{v}_{k}$ is orthogonal to $\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}\right\}$, so
$-\left\|\mathbf{v}_{k}\right\|$ is the distance between \mathbf{x}_{k} and $\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}\right\}$
- The process can be used to find an orthonormal basis by either normalizing each vector as it is generated, or by normalizing the orthogonal basis vectors after all have been generated.

