April 27 Math 3260 sec. 52 Spring 2022 Section 6.4: Gram-Schmidt Orthogonalization Question: Given any-old basis for a subspace W of  $\mathbb{R}^n$ , can we construct an orthogonal basis for that same space?

**Example:** Let 
$$W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2\} = \text{Span}\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\-1 \end{bmatrix} \right\}$$
. Find an orthogonal basis  $\{\mathbf{x}_1, \mathbf{x}_2\}$  that spans  $W$ 

orthogonal basis  $\{\mathbf{v}_1, \mathbf{v}_2\}$  that spans  $\mathbf{w}$ .

Luc need  $\vec{v}_i$  and  $\vec{v}_z$  to be in  $\vec{W}$ . Set  $\vec{v}_i = Q_i \vec{X}_i + Q_2 \vec{X}_z$  and  $\vec{V}_z = b_i \vec{X}_i + b_z \vec{X}_z$ We don't really need four variables. Set  $Q_i = 1$  and  $Q_z = Q_i$   $\Rightarrow$   $\vec{V}_i = \vec{X}_i$ April 27, 2022 1/13 This gives the bonus Sprn (V,) = Spon (X,). Lic have  $\vec{v}_2 = b_1 \vec{X}_1 + b_2 \vec{X}_2$ To make sure we get X2, set b2=1. We need  $\sqrt{1}$  $\Rightarrow \vec{X}_1 \cdot (b_1 \vec{X}_1 + \vec{X}_2) = b_1 \vec{X}_1 \cdot \vec{X}_1 + \vec{X}_1 \cdot \vec{X}_2 = 0$ Solve for b.  $b_{1} \vec{X}_{1} \cdot \vec{X}_{1} = -\vec{X}_{1} \cdot \vec{X}_{2} \implies b_{1} = -\vec{X}_{1} \cdot \vec{X}_{2}$ he get  $\vec{v}_{1} = \vec{X}_{1}$  $\vec{v}_{2} = \vec{X}_{2} - \frac{\vec{x}_{1} \cdot \vec{X}_{2}}{\vec{x}_{1} \cdot \vec{X}_{1}} \vec{X}_{1}$ 

April 27, 2022 2/13

イロト イヨト イヨト イヨト

Using  $\vec{V}_1 = \vec{X}_1$  we can write  $\vec{V}_1 = \vec{X}_1$  $\vec{V}_2 = \vec{X}_2 - \frac{\vec{X}_2 \cdot \vec{V}_1}{\vec{V}_1 \cdot \vec{V}_1} \vec{V}_1$ 

For the given  $\vec{X}'S$ .  $\vec{X}_2 \cdot \vec{V}_1 = 0 - 1 - 1 = -2$ ,  $\vec{V}_1 \cdot \vec{V}_1 = 1 + 1 + 1 = 3$  $\vec{V}_2 = \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix} - \frac{-2}{3} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix} + \begin{bmatrix} 2/3 \\ -2/3 \\ -1/3 \\ -1/3 \end{bmatrix}$ 

The new basis is  $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2/3\\-1/3\\-1/3\\-1/3 \end{bmatrix} \right\}$ 

イロト イポト イヨト イヨト 二日

## Theorem: Gram Schmidt Process

Let  $\{\mathbf{x}_1, \ldots, \mathbf{x}_p\}$  be any basis for the nonzero subspace W of  $\mathbb{R}^n$ . Define the set of vectors  $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$  via

$$\begin{aligned} \mathbf{v}_1 &= \mathbf{x}_1 \\ \mathbf{v}_2 &= \mathbf{x}_2 - \left(\frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1 \\ \mathbf{v}_3 &= \mathbf{x}_3 - \left(\frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1 - \left(\frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2}\right) \mathbf{v}_2 \\ &\vdots \end{aligned}$$

$$\mathbf{v}_{p} = \mathbf{x}_{p} - \sum_{j=1}^{p-1} \left( \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{j}}{\mathbf{v}_{j} \cdot \mathbf{v}_{j}} \right) \mathbf{v}_{j}.$$

Then  $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$  is an orthogonal basis for *W*. Moreover, for each  $k = 1, \dots, p$ 

$$\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_k\} = \operatorname{Span}\{\mathbf{x}_1,\ldots,\mathbf{x}_k\}.$$

## Example

Find an orthonormal (that's orthonormal not just orthogonal) basis for Col A where  $A = \begin{bmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix}$ . we need to start with a basis for Coe(A). met (100) Call the columns \$\$, \$\$, \$\$, \$\$, \$\$, \$\$  $\vec{X}_{1} = \begin{bmatrix} -1 \\ 3 \\ 1 \\ 1 \end{bmatrix}$ ,  $\vec{Y}_{1} = \begin{bmatrix} 6 \\ -8 \\ -2 \\ -7 \end{bmatrix}$ ,  $\vec{X}_{3} = \begin{bmatrix} 6 \\ 3 \\ 6 \\ -3 \end{bmatrix}$ (I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

April 27, 2022 5/13

 $\vec{V}_{1} = \vec{X}_{1}$   $\vec{V}_{2} = \vec{X}_{2} - \frac{\vec{X}_{2} \cdot \vec{V}_{1}}{\vec{V}_{1} \cdot \vec{V}_{1}} \vec{V}_{1}$  $\vec{X}_{2} \cdot \vec{V}_{1} = -6 - 24 - 2 - 4 = -36$ ,  $\vec{V}_{1} \cdot \vec{V}_{1} = 12$ 



 $\vec{v}_1 = \begin{bmatrix} -1 \\ 3 \\ 1 \\ 1 \end{bmatrix}$ ,  $\vec{v}_2 = \begin{bmatrix} 3 \\ 1 \\ 1 \\ -3 \end{bmatrix}$ ,  $\vec{x}_3 = \begin{bmatrix} 6 \\ 3 \\ 6 \\ -3 \end{bmatrix}$ 

< □ > < @ > < E > < E > E のへで April 27, 2022 6/13

 $\vec{V}_3 = \vec{X}_3 - \frac{\vec{X}_3 \cdot \vec{\nabla}_1}{\vec{\nabla}_1 \cdot \vec{\nabla}_2} \vec{\nabla}_1 - \frac{\vec{X}_3 \cdot \vec{\nabla}_2}{\vec{\nabla}_1 \cdot \vec{\nabla}_2} \vec{\nabla}_2$ 



 $\vec{V}_3 = \begin{pmatrix} 6 \\ 3 \\ 6 \\ -3 \end{pmatrix} - \frac{6}{12} \begin{pmatrix} -1 \\ 3 \\ 1 \\ 1 \end{pmatrix} - \frac{30}{12} \begin{bmatrix} 3 \\ 1 \\ 1 \\ -1 \end{bmatrix}$  $= \begin{bmatrix} 6\\3\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Scratch: 
$$6 + \frac{1}{2} - \frac{15}{2} = 6 - \frac{14}{2} = -1$$
  
 $3 - \frac{3}{2} - \frac{5}{2} = 3 - \frac{9}{2} = -1$   
 $6 - \frac{1}{2} - \frac{5}{2} = 6 - \frac{9}{2} = 3$   
 $-3 - \frac{1}{2} + \frac{5}{2} = -3 + \frac{1}{2} = -1$ 

The orthogonal basis elements are  $\vec{v}_1 = \begin{bmatrix} -1 \\ 3 \\ 1 \\ 1 \end{bmatrix}$ ,  $\vec{v}_2 = \begin{bmatrix} 3 \\ 1 \\ 1 \\ -1 \end{bmatrix}$ ,  $\vec{v}_3 = \begin{bmatrix} -1 \\ -1 \\ 3 \\ -1 \end{bmatrix}$ 

April 27, 2022 8/13

To get an orthonormal basis, we normalize.  $\|\nabla_{1}\| = \|\nabla_{2}\| = \|\nabla_{3}\| = \int |2|$ Calling the normalized vectors Wi  $\vec{W}_{1} = \begin{bmatrix} -\frac{1}{4\pi^{2}} \\ \frac{3}{4\pi^{2}} \\ \frac{3}{4\pi^{2}} \\ \frac{1}{4\pi^{2}} \\ \frac{1}{$ { W, W2, W3 } is a orthonormal basis for col(A). <ロト < 回 > < 回 > < 三 > < 三 > 三 三

April 27, 2022 9/13

## Some Results of Gram-Schmidt Process

- Span{v<sub>1</sub>} is the same space as Span{x<sub>1</sub>}, Span{v<sub>1</sub>, v<sub>2</sub>} is the same space as Span{x<sub>1</sub>, x<sub>2</sub>}, and in general Span{v<sub>1</sub>,..., v<sub>k</sub>} is the same space as Span{x<sub>1</sub>,..., x<sub>k</sub>}
- ►  $\mathbf{v}_k = \mathbf{x}_k \mathbf{p}_k$  where  $\mathbf{p}_k$  is the projection of  $\mathbf{x}_k$  on the subspace Span{ $\mathbf{x}_1, \dots, \mathbf{x}_{k-1}$ }
- $\mathbf{v}_k$  is orthogonal to Span $\{\mathbf{x}_1, \dots, \mathbf{x}_{k-1}\}$ , so
- ▶  $\|\mathbf{v}_k\|$  is the distance between  $\mathbf{x}_k$  and  $\text{Span}\{\mathbf{x}_1, \dots, \mathbf{x}_{k-1}\}$
- The process can be used to find an orthonormal basis by either normalizing each vector as it is generated, or by normalizing the orthogonal basis vectors after all have been generated.