April 4 Math 3260 sec. 51 Spring 2022

Section 4.4: Coordinate Systems

Theorem: Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for a vector space V. Then for each vector \mathbf{x} in V, there is a unique set of scalars c_{1}, \ldots, c_{n} such that

$$
\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots c_{n} \mathbf{b}_{n}
$$

- Remark: It's clear that each vector can be written as a linear combination because a basis is a spanning set.
- Remark: This is saying that it can only be done in one way-that is, there is only one set of numbers c_{1}, \ldots, c_{n}.

Uniqueness of Coefficients

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis for a vector space V and let \mathbf{x} be a vector in V. If

$$
\begin{aligned}
& \mathbf{x}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+\cdots c_{n} \mathbf{b}_{n} \quad \text { and } \\
& \mathbf{x}=a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+\cdots a_{n} \mathbf{b}_{n},
\end{aligned}
$$

show that $a_{1}=c_{1}, a_{2}=c_{2}, \ldots, a_{n}=c_{n}$.
we con create a homogeneous equation bs subtracting the bottom line from the top.

$$
\overrightarrow{0}=\left(c_{1}-a_{1}\right) \vec{b}_{1}+\left(c_{2}-a_{2}\right) \vec{b}_{2}+\ldots+\left(c_{n}-a_{n}\right) \vec{b}_{n}
$$

Because the basis is linearly indepudent
the coefficients must all be zero.

That'is

$$
\begin{gathered}
c_{1}-a_{1}=0 \Rightarrow a_{1}=c_{1} \\
c_{2}-a_{2}=0 \Rightarrow a_{2}=c_{2} \\
e+c .
\end{gathered}
$$

Consequence of Linear Independence

Take the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ where

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

It is true that $\mathbb{R}^{2}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. Consider $\mathbf{x}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$. Note that we can write \mathbf{x} in two different ways

$$
\begin{aligned}
& \mathbf{x}=2 \mathbf{v}_{1}+3 \mathbf{v}_{2}+0 \mathbf{v}_{3} \text { and } \\
& \mathbf{x}=1 \mathbf{v}_{1}+2 \mathbf{v}_{2}+1 \mathbf{v}_{3} .
\end{aligned}
$$

Why doesn't this contradict our theorem?

$$
\text { The set }\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\} \text { is not linear's independent. }
$$

Coordinate Vectors

Definition: Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis of the vector space V. For each \mathbf{x} in V we define the coordinate vector of \mathbf{x} relative to the basis \mathcal{B} to be the unique vector $\left(c_{1}, \ldots, c_{n}\right)$ in \mathbb{R}^{n} where these entries are the weights $\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots c_{n} \mathbf{b}_{n}$.

We'll use the notation

$$
\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=[\mathbf{x}]_{\mathcal{B}}
$$

Example
Let $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ (in that order) in \mathbb{P}_{3}. Determine $[\mathbf{p}]_{\mathcal{B}}$ where
(a) $\mathbf{p}(t)=3-4 t^{2}+6 t^{3}=3(1)+O(t)+(-4)\left(t^{2}\right)+6 t^{3}$

$$
[\vec{p}]_{B}=\left[\begin{array}{c}
3 \\
0 \\
-4 \\
6
\end{array}\right]
$$

(b) $\mathbf{p}(t)=p_{0}+p_{1} t+p_{2} t^{2}+p_{3} t^{3}$

$$
[\vec{p}]_{B}=\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]
$$

Example
Let $\mathbf{b}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, and $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$. Find $[\mathbf{x}]_{\mathcal{B}}$ for $\mathbf{x}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$. we need c_{1} and c_{2} such that

$$
\begin{aligned}
& \vec{x}=c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2} \\
& c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
\end{aligned}
$$

or as a matrix equation

$$
\underset{A}{\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]} \underset{\vec{x}}{\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]}=\underset{\vec{b}}{\left[\begin{array}{l}
4 \\
5
\end{array}\right]}
$$

we con va Cranmer's rule

Call the csetficial matrix A.

$$
\begin{aligned}
& \operatorname{dat}\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]=2+1=3, \quad A_{1}(\vec{b})=\left[\begin{array}{cc}
4 & -1 \\
5 & 1
\end{array}\right] \operatorname{det}\left(A_{1}(\vec{b})\right)=9 \\
& A_{2}(\vec{b})=\left[\begin{array}{ll}
2 & 4 \\
1 & 5
\end{array}\right] \quad \operatorname{det}\left(A_{2}(\vec{b})\right)=6 \\
& C_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{dt}(A)}=\frac{9}{3}=3, \quad C_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{dat}(A)}=\frac{6}{3}=2
\end{aligned}
$$

Iten u

$$
[\vec{x}]_{B}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Coordinates in \mathbb{R}^{n}

Note from this example that $\mathbf{x}=P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$ where $P_{\mathcal{B}}$ is the matrix $\left[\mathbf{b}_{1} \mathbf{b}_{2}\right.$. The matrix $P_{\mathcal{B}}$ is called the change of coordinates matrix for the basis \mathcal{B} (or from the basis \mathcal{B} to the standard basis).

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis of \mathbb{R}^{n}. Then the change of coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is the linear transformation defined by

$$
[\mathbf{x}]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} \mathbf{x}
$$

where the matrix

$$
P_{\mathcal{B}}=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}
\end{array}\right] .
$$

Example
Let $\mathcal{B}=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$. Determine the matrix $P_{\mathcal{B}}$ and its inverse.

$$
\begin{aligned}
& P_{B}=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right] \quad P_{B}^{-1}=\frac{1}{3}\left[\begin{array}{rr}
1 & 1 \\
-1 & 2
\end{array}\right] \\
& \operatorname{dt}\left(P_{B}\right)=3
\end{aligned}
$$

Use this to find
(a) the coordinate vector of $\left[\begin{array}{l}2 \\ 1\end{array}\right]$

$$
\left[\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right]_{B}=P_{B}^{-1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

(b) the coordinate vector of $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

$$
\left[\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]_{B}=P_{B}^{-1}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{rr}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
0 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

(c) a vector \mathbf{x} whose coordinate vector is $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

$$
\vec{x}=P_{B}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Figure: \mathbb{R}^{2} shown using elementary basis $\{(1,0),(0,1)\}$ and with the alternative basis $\{(2,1),(-1,1)\}$.

Theorem: Coordinate Mapping

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is a one to one mapping of V onto \mathbb{R}^{n}.

Remark: When such a mapping exists, we say that V is isomorphic to \mathbb{R}^{n}. Properties of subsets of V, such as linear dependence, can be discerned from the coordinate vectors in \mathbb{R}^{n}.

\mathbb{P}_{3} is Isomorphic to \mathbb{R}^{4}

We saw that using the ordered basis $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ that any vector

$$
\mathbf{p}(t)=p_{0}+p_{1} t+p_{2} t^{2}+p_{3} t^{3}
$$

in \mathbb{P}_{3} has coordinate vector

$$
[\mathbf{p}]_{\mathcal{B}}=\left[\begin{array}{c}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]
$$

in \mathbb{R}^{4}.

Example
Use coordinate vectors to determine if the set $\{\mathbf{p}, \mathbf{q}, \mathbf{r}\}$ is linearly dependent or independent in \mathbb{P}_{2}.

$$
\mathbf{p}(t)=1-2 t^{2}, \quad \mathbf{q}(t)=3 t+t^{2}, \quad \mathbf{r}(t)=1+t
$$

Let's use the basis $B=\left\{1, t, t^{2}\right\}$.
The coordinde vectors ane

$$
\begin{aligned}
& \text { The coordinde vectors are } \\
& {[\vec{p}]_{B}=\left[\begin{array}{l}
1 \\
0 \\
-2
\end{array}\right],[\vec{q}]_{B}=\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right],[\vec{r}]_{B}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]}
\end{aligned}
$$

$\{\vec{p}, \vec{q}, \vec{r}\}$ is dinearts independent in \mathbb{P}_{2} if and only if $\left\{[\vec{p}]_{B},[\vec{\gamma}]_{B},[\vec{r}]_{B}\right\}$ is lin. indep.
in \mathbb{R}^{3}. Is there a sat of coefficients
C_{1}, C_{2} such that

$$
c_{1}\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right]
$$

we con use a matrix

$$
\left[\begin{array}{cc}
1 & 1 \\
0 & 1 \\
-2 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right]
$$

We can use the augmented matrix

$$
\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 3 \\
-2 & 0 & 1
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The last column is a pivot Column, hance the system is inconsistent.

The vectors in \mathbb{R}^{3} are lin. independent, 'so $\{\vec{p}, \vec{q}, \vec{r}\}$ are lin. independent in \mathbb{P}_{2}.

