April 4 Math 3260 sec. 52 Spring 2022

Section 4.4: Coordinate Systems

Theorem: Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ be a basis for a vector space *V*. Then for each vector **x** in *V*, there is a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n.$$

- Remark: It's clear that each vector can be written as a linear combination because a basis is a spanning set.
- ▶ **Remark:** This is saying that it can only be done in one way—that is, there is only one set of numbers *c*₁,..., *c*_n.

Uniqueness of Coefficients

Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ be an ordered basis for a vector space V and let **x** be a vector in V. If

$$\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \cdots + c_n \mathbf{b}_n \text{ and}$$

$$\mathbf{x} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \cdots + a_n \mathbf{b}_n,$$

show that $a_1 = c_1, a_2 = c_2, ..., a_n = c_n$.

We can create a homoseneous equation by subtracting the 2^{nJ} line from the 1st.

$$\vec{O} = (c_1 - a_1)\vec{b}_1 + (c_2 - a_2)\vec{b}_2 + \dots + (c_n - a_n)\vec{b}_n$$

Because a basis is linearly in dependent is a one March 31, 2022 2/17 the coefficients have to be zero. $C_1 - Q_1 = 0 \implies Q_1 = C_1$ $C_2 - Q_2 = 0 \implies Q_2 = C_2$ $e + C_1$

Idence the coefficients are unique.

Consequence of Linear Independence

Take the set $\{v_1, v_2, v_3\}$ where

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \text{and} \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

It is true that $\mathbb{R}^2 = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Consider $\mathbf{x} = \begin{bmatrix} 2\\ 3 \end{bmatrix}$. Note that we can write \mathbf{x} in two different ways

$$\mathbf{x} = 2\mathbf{v}_1 + 3\mathbf{v}_2 + 0\mathbf{v}_3$$
 and
 $\mathbf{x} = 1\mathbf{v}_1 + 2\mathbf{v}_2 + 1\mathbf{v}_3$.

Why doesn't this contradict our theorem?

$$\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$$
 is not linearly independent
hence not a basis.
March 31, 2022 4/17

Coordinate Vectors

Definition: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be an **ordered** basis of the vector space *V*. For each **x** in *V* we define the **coordinate vector of x relative to the basis** \mathcal{B} to be the unique vector (c_1, \dots, c_n) in \mathbb{R}^n where these entries are the weights $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$.

We'll use the notation

$$\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = [\mathbf{x}]_{\mathcal{B}}.$$

Example

Let $\mathcal{B} = \{1, t, t^2, t^3\}$ (in that order) in \mathbb{P}_3 . Determine $[\mathbf{p}]_{\mathcal{B}}$ where (a) $\mathbf{p}(t) = 3 - 4t^2 + 6t^3 = (3)\mathbf{1} + (0)\mathbf{t} + (-4)\mathbf{t}^2 + (6)\mathbf{t}^3$ $\begin{bmatrix} \mathbf{p} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 \\ 0 \\ -4 \\ 6 \end{bmatrix}$

(b)
$$\mathbf{p}(t) = p_0 + p_1 t + p_2 t^2 + p_3 t^3$$

 $\begin{bmatrix} \vec{p} \end{bmatrix}_{\mathcal{B}}^2 = \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}$

Example
Let
$$\mathbf{b}_1 = \begin{bmatrix} 2\\1 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} -1\\1 \end{bmatrix}$, and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Find $[\mathbf{x}]_{\mathcal{B}}$ for
 $\mathbf{x} = \begin{bmatrix} 4\\5 \end{bmatrix}$. We need to find the Coefficients
 C_1 , C_2 such that $\vec{\chi} = C_1\vec{b}_1 + C_2\vec{b}_2$

$$C_{1} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

In matrix notation $\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ $\begin{bmatrix} 7 \\ 1 \end{bmatrix} \begin{bmatrix} 7 \\ 1 \end{bmatrix}$

$$dt(P) = dt\left(\begin{array}{c} 2 & -1 \\ 1 & 1 \end{array} \right) = 2 + 1 = 3$$

$$P_{1}(x) = \begin{bmatrix} 4 & -1 \\ 5 & 1 \end{bmatrix} \quad dt(P_{1}(x)) = 4 + 5 = 9$$

$$P_{2}(x) = \begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix} \quad dt(P_{2}(x)) = 10 - 4 = 6$$

$$C_{1} = \frac{dt(P_{1}(x))}{dt(P)} = \frac{9}{3} = 3, \quad C_{2} = \frac{dt(P_{2}(x))}{dt(P)} = \frac{6}{3} = 2$$

$$\Rightarrow \quad \left[\overrightarrow{X} \right]_{B} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

March 31, 2022 8/17

୬ବଙ

▲口> ▲圖> ▲豆> ▲豆> 三豆

Coordinates in \mathbb{R}^n

Note from this example that $\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$ where $P_{\mathcal{B}}$ is the matrix $[\mathbf{b}_1 \ \mathbf{b}_2]$. The matrix $P_{\mathcal{B}}$ is called the **change of coordinates matrix** for the basis \mathcal{B} (or from the basis \mathcal{B} to the standard basis).

Let $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$ be an ordered basis of \mathbb{R}^n . Then the change of coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is the linear transformation defined by

$$[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}\mathbf{x}$$

where the matrix

$$P_{\mathcal{B}} = [\mathbf{b}_1 \quad \mathbf{b}_2 \quad \cdots \quad \mathbf{b}_n].$$

イロト イポト イラト イラト

March 31, 2022

9/17

Example Let $\mathcal{B} = \left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$. Determine the matrix $P_{\mathcal{B}}$ and its inverse.

$$P_{B} = \begin{bmatrix} z & -1 \\ 1 & 1 \end{bmatrix} \qquad P_{B}^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$$

$$dut(P_{B}) = 3$$

Use this to find

(a) the coordinate vector of $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$

$$\begin{bmatrix} 2 \\ -1 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

March 31, 2022 10/17

(b) the coordinate vector of
$$\begin{bmatrix} -1\\1 \end{bmatrix}$$

$$\begin{bmatrix} \begin{bmatrix} -1\\1 \end{bmatrix}_{\mathfrak{B}} = \mathcal{P}_{\mathfrak{B}}^{-1} \begin{bmatrix} -1\\1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1&1\\-1&2 \end{bmatrix} \begin{bmatrix} -1\\1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 0\\3 \end{bmatrix} = \begin{bmatrix} 0\\1 \end{bmatrix}$$

(c) a vector **x** whose coordinate vector is $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

$$\dot{\mathbf{x}} = \mathcal{P}_{\mathbf{D}}\left[\dot{\mathbf{x}}\right]_{\mathbf{Q}} = \begin{bmatrix} \mathbf{z} & -\mathbf{z} \\ \mathbf{z} & \mathbf{z} \end{bmatrix} \begin{bmatrix} \mathbf{z} & -\mathbf{z} \\ \mathbf{z} \end{bmatrix}$$

March 31, 2022 11/17

<ロト <回 > < 回 > < 回 > < 回 > … 回

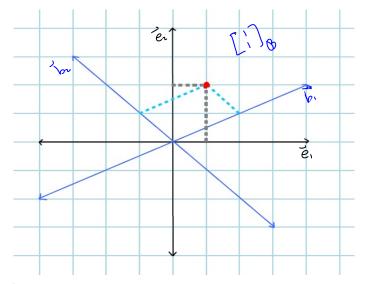


Figure: \mathbb{R}^2 shown using elementary basis $\{(1,0), (0,1)\}$ and with the alternative basis $\{(2,1), (-1,1)\}$.

Theorem: Coordinate Mapping

Let $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$ be an ordered basis for a vector space *V*. Then the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is a **one to one** mapping of *V* **onto** \mathbb{R}^n .

Remark: When such a mapping exists, we say that *V* is **isomorphic** to \mathbb{R}^n . Properties of subsets of *V*, such as linear dependence, can be discerned from the coordinate vectors in \mathbb{R}^n .

March 31, 2022

13/17

\mathbb{P}_3 is **Isomorphic** to \mathbb{R}^4

We saw that using the ordered basis $\mathcal{B} = \{1, t, t^2, t^3\}$ that any vector

$$\mathbf{p}(t) = \rho_0 + \rho_1 t + \rho_2 t^2 + \rho_3 t^3$$

in \mathbb{P}_3 has coordinate vector

$$[\mathbf{p}]_{\mathcal{B}} = \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}$$

< ロ > < 同 > < 回 > < 回 >

March 31, 2022

14/17

in \mathbb{R}^4 .

Example

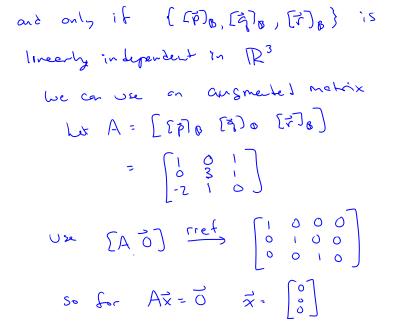
1

Use coordinate vectors to determine if the set $\{p, q, r\}$ is linearly dependent or independent in \mathbb{P}_2 .

$$\mathbf{p}(t) = 1 - 2t^{2}, \quad \mathbf{q}(t) = 3t + t^{2}, \quad \mathbf{r}(t) = 1 + t$$
We can choose a basis to find coordinate
Jectors. Let's use $B = \{1, t, t^{2}\}.$
The coordinate vectors are
 $[\vec{p}]_{B} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}, \quad [\vec{r}]_{B} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}, \quad [\vec{r}]_{B} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}, \quad [\vec{r}]_{B} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}, \quad [\vec{r}]_{B} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}, \quad [\vec{r}]_{B} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}, \quad [\vec{r}]_{B} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}, \quad [\vec{r}]_{B} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}, \quad [\vec{r}]_{B} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad [\vec{a}]_{B} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

March 31, 2022 15/17

イロト イポト イヨト イヨト



March 31, 2022 16/17

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

Hence the columns of A one linearly independent. So (p, q, r) is linearly independent Pz. ĩn

March 31, 2022 17/17