April 5 Math 2306 sec. 52 Spring 2023

Section 13: The Laplace Transform

Recall that we defined the Laplace transform of a function defined on $[0, \infty)$.

Definition: Let $f(t)$ be defined on $[0, \infty)$. The Laplace transform of f is denoted and defined by

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s)
$$

The domain of the transformation $F(s)$ is the set of all s such that the integral is convergent.

We can compute a Laplace transform using this definition. More often, we will use a table of Laplace transforms.

A Limited Table of Laplace Transforms

Some basic results include:

- $\mathscr{L}\{\alpha f(t)+\beta g(t)\}=\alpha F(s)+\beta G(s)$
- $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$
- $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}, \quad s>0$

Evaluate the Laplace transform $\mathscr{L}\{f(t)\}$ if

$$
\mathscr{L}\{1\}=\frac{1}{s}, \quad s ;
$$

(c) $f(t)=(2-t)^{2}=4-4 t+t^{2}$

$$
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}},
$$

$$
\begin{aligned}
\mathscr{L}\left\{(2-t)^{2}\right\} & =\mathcal{L}\left\{4-4 t+t^{2}\right\} \\
& =4 \mathcal{L}\{1\}-4 \mathcal{L}\{t]+\mathscr{L}\left\{t^{2}\right\} \\
& =4\left(\frac{1}{5}\right)-4\left(\frac{11}{s^{2}}\right)+\frac{2!}{s^{3}} \\
& =\frac{4}{5}-\frac{4}{s^{2}}+\frac{2!}{s^{3}}
\end{aligned}
$$

Evaluate the Laplace transform $\mathscr{L}\{f(t)\}$ if
(d) $f(t)=\sin ^{2} 5 t$

How would we evaluate $\int \sin ^{2} s t d t$?
use $\sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos (2 \theta)$

$$
\sin ^{2}(s t)=\frac{1}{2}-\frac{1}{2} \cos (10 t) \quad \mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}
$$

$$
\begin{aligned}
\mathscr{L}\left\{\sin ^{2} 5 t\right\} & =\mathscr{L}\left\{\frac{1}{2}-\frac{1}{2} \cos (10 t)\right\} \\
& =\frac{1}{2} \mathscr{L}\{1\}-\frac{1}{2} \mathcal{L}\{\cos (10 t)\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{1}{S}\right)-\frac{1}{2} \frac{S}{S^{2}+10^{2}} \\
& =\frac{\frac{1}{2}}{S}-\frac{1}{2} \frac{S}{S^{2}+100}
\end{aligned}
$$

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Definition: Let $c>0$. A function f defined on $[0, \infty)$ is said to be of exponential order c provided there exists positive constants M and T such that $|f(t)|<M e^{c t}$ for all $t>T$.

As $t \rightarrow \infty, f(t)$ doesint grow fasten thon on exponential
Definition: A function f is said to be piecewise continuous on an interval $[a, b]$ if f has at most finitely many jump discontinuities on $[a, b]$ and is continuous between each such jump.

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Theorem: If f is piecewise continuous on $[0, \infty)$ and of exponential order c for some $c>0$, then f has a Laplace transform for $s>c$.

An example of a function that is NOT of exponential order for any c is $f(t)=e^{t^{2}}$. Note that

$$
f(t)=e^{t^{2}}=\left(e^{t}\right)^{t} \quad \Longrightarrow \quad|f(t)|>e^{c t} \quad \text { whenever } \quad t>c .
$$

This is a function that doesn't have a Laplace transform. We won't be dealing with this type of function here.

Section 14: Inverse Laplace Transforms

Now we wish to go backwards: Given $F(s)$ can we find a function $f(t)$ such that $\mathscr{L}\{f(t)\}=F(s)$?

If so, we'll use the following notation

$$
\mathscr{L}^{-1}\{F(s)\}=f(t) \quad \text { provided } \quad \mathscr{L}\{f(t)\}=F(s)
$$

We'll call $f(t)$ an inverse Laplace transform of $F(s)$.

A Table of Inverse Laplace Transforms

- $\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}=1$
$-\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}=t^{n}$, for $n=1,2, \ldots$
- $\mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}$
- $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos k t$
- $\mathscr{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin k t$

The inverse Laplace transform is also linear so that

$$
\mathscr{L}^{-1}\{\alpha F(s)+\beta G(s)\}=\alpha f(t)+\beta \boldsymbol{g}(t)
$$

Using a Table

When using a table of Laplace transforms, the expression must match exactly. For example,

$$
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}
$$

so

$$
\mathscr{L}^{-1}\left\{\frac{3!}{s^{4}}\right\}=t^{3}
$$

Note that $n=3$, so there must be 3 ! in the numerator and the power $4=3+1$ on s.

$$
\text { what is } \mathscr{L}^{-1}\left\{\frac{1}{S^{4}}\right\} ?
$$

Find the Inverse Laplace Transform

$$
\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}=t^{n},
$$

(a) $\mathscr{L}^{-1}\left\{\frac{1}{s^{7}}\right\}$

If $n+1=7$, then $n=6$. We meed 6! in the numerator

$$
\begin{aligned}
& \frac{1}{s^{7}}=\frac{6!}{6!} \frac{1}{s^{7}}=\frac{1}{6!} \frac{6!}{s^{7}} \\
& \mathscr{L}^{-1}\left\{\frac{1}{s^{7}}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{6!} \frac{6!}{s^{7}}\right\}=\frac{1}{6!} \dot{\mathcal{L}}\left\{\frac{6!}{s^{7}}\right\}=\frac{1}{6!} t^{6}
\end{aligned}
$$

Example: Evaluate

$$
\begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos k t \\
& \mathscr{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin k t
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{s+1}{s^{2}+9}\right\} \\
= & \mathcal{L}^{-1}\left[\frac{s}{s^{2}+9}+\frac{1}{s^{2}+9}\right\} \quad k^{-1}\left\{\frac{n}{s^{2}+k^{2}}\right\}=s \\
= & \mathcal{L}^{-1}\left[\frac{s}{s^{2}+3^{2}}\right]+\mathcal{L}^{-1}\left[\frac{3}{3} \frac{1}{s^{2}+3^{2}}\right\} \\
= & \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right)+\frac{1}{3} \mathscr{L}^{-1}\left\{\frac{3}{s^{2}+3^{2}}\right\} \\
= & \cos (3 t)+\frac{1}{3} \sin (3 t)
\end{aligned}
$$

Example: Evaluate
(c) $\mathscr{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\}$
we need a partial fraction decamp.

$$
\begin{aligned}
& \frac{s-8}{s(s-2)}=\frac{A}{s}+\frac{B}{s-2} \quad \begin{array}{l}
\text { clear } \\
\text { fractions } s(s-2)
\end{array} \\
& s-8=A(s-2)+B s
\end{aligned}
$$

set $s=0 \quad 0-8=A(0-2)+B(0)$.

$$
-8=-2 A \Rightarrow A=4
$$

$$
\left.\begin{array}{rl}
\text { set } s=2 \quad 2-8=A(2-2)+B(2) \\
& -6=2 B \Rightarrow B=-3
\end{array}\right] \begin{aligned}
& \frac{s-8}{s^{2}-2 s}= \frac{4}{s}-\frac{3}{s-2} \\
& \begin{aligned}
\mathcal{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\} & =\mathcal{L}^{-1}\left(\frac{4}{s}-\frac{3}{s-2}\right\} \\
& =4 \mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t} \\
& =4(1)-3\left(e^{2+}\right) \\
& =4-3 e^{2 t}
\end{aligned}
\end{aligned}
$$

