April 5 Math 3260 sec. 51 Spring 2024

Section 5.2: Eigenvectors and Eigenvalues

Definition:

Let A be an $n \times n$ matrix. A nonzero vector \mathbf{x} such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

for some scalar λ is called an eigenvector of the matrix A.
A scalar λ such that there exists a nonzero vector \mathbf{x} satisfying $A \mathbf{x}=\lambda \mathbf{x}$ is called an eigenvalue of the matrix A. Such a nonzero vector \mathbf{x} is an eigenvector corresponding to λ.

Eigenspace

Definition:

Let A be an $n \times n$ matrix and λ and eigenvalue of A. The set of all eigenvectors corresponding to λ together with the zero vector-
i.e. the set

$$
\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \text { and } A \mathbf{x}=\lambda \mathbf{x}\right\},=\operatorname{Nul}(A-\lambda I)
$$

is called the eigenspace of A corresponding to λ.

Remark: The video mentioned something called an Eigenbasis. When possible, an eigenbasis will be constructed by taking bases for all eigenspaces for a matrix and combining them.

We'll get back to this in section 5.3 when we talk about diagonalizability.

Matrices with Nice Structure

Theorem:

If A is an $n \times n$ triangular matrix, then the eigenvalues of A are its diagonal elements.

Example: Find the eigenvalues of the matrix $A=\left[\begin{array}{cccc}4 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & -8 & 0 \\ 1 & 2 & 3 & 489\end{array}\right]$
They are

$$
\begin{aligned}
& \lambda_{1}=4, \lambda_{2}=2, \lambda_{3}=-9 \\
& \text { and } \lambda_{4}=489 .
\end{aligned}
$$

Example
Suppose $\lambda=0$ is an eigenvalue ${ }^{1}$ of a matrix A. Argue that A is not invertible.

If $\lambda=0$ is on eigenvalue, then there's a nonzero vector \vec{x} such that

$$
A \vec{x}=0 \vec{x} \quad \Rightarrow \quad A \vec{x}=\overrightarrow{0}
$$

Since the homogeneas equation has a nontrivial solution, A must rot be invertible.
${ }^{1}$ Eigenvectors must be nonzero vectors, but it is perfectly legitimate to have a zero eigenvalue!

Theorems

Theorem:

A square matrix A is invertible if and only if zero is not and eigenvalue.

Theorem:

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ are eigenvectors of a matrix A corresponding to distinct eigenvalues, $\lambda_{1}, \ldots, \lambda_{r}$, then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is linearly independent.

Linear Independence
Suppose \mathbf{v}_{1} and \mathbf{v}_{2} are eigenvectors of a matrix A corresponding to distinct eigenvalues λ_{1} and λ_{2} (ie. $\lambda_{1} \neq \lambda_{2}$).

Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly independent.
we know $\vec{v}_{1} \neq \overrightarrow{0}, \vec{v}_{2} \neq 0, \lambda_{1} \neq \lambda_{2}, A \vec{v}_{1}=\lambda_{1} \vec{v}_{1}$ and $A \vec{V}_{2}=\lambda_{2} \vec{V}_{2}$. Consider the homogeneous. vector equation

$$
\begin{equation*}
c_{1} \vec{V}_{1}+c_{2} \vec{V}_{2}=\overrightarrow{0} \tag{*}
\end{equation*}
$$

we need to show that $C_{1}=0$ ad $C_{2}=0$ is necessarily true. We 'Il create two equations
(1) Multi ip'z (*) by A,
(2) Multiply (*) by λ_{1}.
(1)

$$
\begin{aligned}
& A\left(c_{1} \vec{v}_{1}+c_{2} v_{2}\right)=A \overrightarrow{0} \\
& c_{1} A \vec{v}_{1}+c_{2} A \vec{v}_{2}=\vec{O} \\
& c_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{2} \vec{v}_{2}=\overrightarrow{0} t \text { saw this. }
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \lambda_{1}\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}\right)=\lambda_{1} \overrightarrow{0} \\
& c_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{1} \vec{v}_{2}=\overrightarrow{0} \in
\end{aligned}
$$

Subtract one equation from the other

$$
\begin{gathered}
c_{1} \lambda_{1} \vec{V}_{1}+c_{2} \lambda_{2} \vec{V}_{2}=\overrightarrow{0} \\
-c_{1} \lambda_{1} \vec{V}_{1}+c_{2} \lambda_{1} \vec{v}_{2}=\overrightarrow{0} \\
\vec{O}+c_{2} \lambda_{2} \vec{V}_{2}-c_{2} \lambda_{1} \vec{v}_{2}=\overrightarrow{0}
\end{gathered}
$$

$$
c_{2}\left(\lambda_{2}-\lambda_{1}\right) \vec{v}_{2}=\overrightarrow{0}
$$

So $c_{2}=0$, or $\lambda_{2}-\lambda_{1}=0$, or $\vec{v}_{2}=\overrightarrow{0}$. $\vec{V}_{2} \neq \overrightarrow{0}$ as a eisenvector, $\lambda_{2}-\lambda_{1} \neq 0$ since $\lambda_{1} \neq \lambda_{2}$.
so $C_{2}=0$. Then equation ($*$) becones

$$
c_{1} \vec{V}_{1}+O \vec{V}_{2}=\overrightarrow{0} \Rightarrow c_{1} \vec{V}_{1}=\overrightarrow{0}
$$

Since. $\vec{V}_{1} \neq \overrightarrow{0}$, it nust be that $C_{1}=0$.
Beconse $c_{1}=c_{2}=0$ is the culy sulutiou to $(*)$, $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is limearly in dependent

Another Addendum to the Invertible Matrix Thm.

Theorem:

The $n \times n$ matrix A is invertible if and only if ${ }^{a}$
(s) The number 0 is not an eigenvalue of A.
(t$)$ The determinant of A is nonzero.
${ }^{\text {a }}$ This is nothing new, we're just adding to the list.

Section 5.2: The Characteristic Equation
Find the eigenvalues of $A=\left[\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right]$ by appealing to the fact that the equation $A \mathbf{x}=\lambda / 2 \mathbf{x}$ can be restated as:

Find a nontrivial solution of the homogeneous equation

$$
\left(A-\lambda I_{2}\right) \mathbf{x}=\mathbf{0} .
$$

$$
\begin{aligned}
& \text { we need } \operatorname{det}(A-\lambda I)=0 \\
& \begin{aligned}
& A-\lambda I=\left[\begin{array}{cc}
2 & 3 \\
3 & -6
\end{array}\right]-\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right]=\left[\begin{array}{cc}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right] \\
& \begin{aligned}
\operatorname{det}(A-\lambda I) & =(2-\lambda)(-6-\lambda)-3 \cdot 3 \\
& =\lambda^{2}+4 \lambda-12-9
\end{aligned}
\end{aligned}
\end{aligned}
$$

$$
=\lambda^{2}+4 \lambda-21
$$

sit to zero,

$$
\begin{aligned}
& \lambda^{2}+4 \lambda-21=0 \\
& (\lambda+7)(\lambda-3)=0
\end{aligned}
$$

we find two eigenvalues

$$
\lambda_{1}=-7, \lambda_{2}=3
$$

Characteristic Equation

Definition:

For $n \times n$ matrix A, the expression $\operatorname{det}(A-\lambda I)$ is an $n^{t h}$ degree polynomial in λ. It is called the characteristic polynomial of A.

Definition:

The equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of A.

Theorem:

The scalar λ is an eigenvalue of the matrix A if and only if it is a root of the characteristic equation.

