April 5 Math 3260 sec. 51 Spring 2024

Section 5.2: Eigenvectors and Eigenvalues

Definition:

Let A be an $n \times n$ matrix. A nonzero vector **x** such that

 $A\mathbf{x}=\lambda\mathbf{x}$

for some scalar λ is called an **eigenvector** of the matrix *A*.

A scalar λ such that there exists a nonzero vector **x** satisfying $A\mathbf{x} = \lambda \mathbf{x}$ is called an **eigenvalue** of the matrix *A*. Such a nonzero vector **x** is an *eigenvector corresponding to* λ .

Eigenspace

Definition:

Let *A* be an $n \times n$ matrix and λ and eigenvalue of *A*. The set of all eigenvectors corresponding to λ together with the zero vector i.e. the set

 $\{\mathbf{x} \in \mathbb{R}^n \mid \text{ and } A\mathbf{x} = \lambda \mathbf{x}\}, = \text{Nul}(A - \times T)$

is called the eigenspace of A corresponding to λ .

Remark: The video mentioned something called an **Eigenbasis**. When possible, an **eigenbasis** will be constructed by taking bases for all eigenspaces for a matrix and combining them.

We'll get back to this in section 5.3 when we talk about *diagonalizability*.

Matrices with Nice Structure

Theorem:

 \neg

If A is an $n \times n$ triangular matrix, then the eigenvalues of A are its diagonal elements.

Example: Find the eigenvalues of the matrix A =

$$= \left[\begin{array}{rrrrr} 4 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & -8 & 0 \\ 1 & 2 & 3 & 489 \end{array} \right]$$

They are

$$\lambda_1 = 4$$
, $\lambda_2 = 2$, $\lambda_3 = -8$
 $aab = \lambda_4 = 489$.

Example

Suppose $\lambda = 0$ is an eigenvalue¹ of a matrix *A*. Argue that *A* is not invertible.

If
$$\lambda = 0$$
 is an eigenvalue, then there's
a non-zero vector \vec{x} such that
 $A\vec{x} = 0\vec{x} \implies A\vec{x} = \vec{0}$.
Since the homogeneous equation has
a nontrivial solution, A must
rot be invertible.

¹Eigenvectors must be nonzero vectors, but it is perfectly legitimate to have a zero eigenvalue!

Theorem:

A square matrix A is invertible if and only if zero is **not** and eigenvalue.

Theorem:

If $\mathbf{v}_1, \ldots, \mathbf{v}_r$ are eigenvectors of a matrix *A* corresponding to distinct eigenvalues, $\lambda_1, \ldots, \lambda_r$, then the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is linearly independent.

Linear Independence

Suppose \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of a matrix A corresponding to distinct eigenvalues λ_1 and λ_2 (i.e. $\lambda_1 \neq \lambda_2$).

Show that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly independent.

We know $\vec{v}_1 \neq \vec{0}$, $\vec{v}_2 \neq 0$, $\lambda_1 \neq \lambda_2$, $A\vec{v}_1 = \lambda_1 \vec{v}_1$ and AVZ=XZVZ. Consider the homospheous. vector equation $C_{1}V_{1} + C_{2}V_{2} = 0$ (*) We need to show that CI=0 ad CZ=0 is necessarily true we'll creese two equations (multiply (x) by A , @ Multiply (*) by > April 3, 2024 6/52

Subtract one equation from the other

$$\begin{array}{c} c_1\lambda_1\vec{v}_1 + c_2\lambda_2\vec{v}_2 = \vec{0} \\ - c_1\lambda_1\vec{v}_1 + c_2\lambda_1\vec{v}_2 = \vec{0} \\ \hline \vec{0} + c_2\lambda_2\vec{v}_2 - c_2\lambda_1\vec{v}_2 = \vec{0} \end{array}$$

April 3, 2024 7/52

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQの

$$C_{2}(\lambda_{2}-\lambda_{1})\vec{\nabla}_{2} = \vec{O}$$
So $C_{2}=0$, or $\lambda_{2}-\lambda_{1}=0$, or $\vec{\nabla}_{2}=\vec{O}$.
 $\vec{\nabla}_{2}\neq\vec{O}$ as a eigenvector, $\lambda_{2}-\lambda_{1}\neq 0$ since $\lambda_{1}\neq\lambda_{2}$.
So $C_{2}=0$. Then equation (#) becomes
 $C_{1}\vec{\nabla}_{1} + 0\vec{\nabla}_{2} = \vec{O} \Rightarrow C_{1}\vec{\nabla}_{1} = \vec{O}$
Since $\vec{\nabla}_{1}\neq\vec{O}$, it must be that $C_{1}=0$.
Beconse $C_{1}=C_{2}=0$ is the only solution
to (#)) $\{\vec{\nabla}_{1},\vec{\nabla}_{2}\}$ is linearly
in dependent.

▲ □ ▶ ▲ ⓓ ▶ ▲ 힅 ▶ ▲ 힅 ▶ ■ 월 ∽ Q @
 April 3, 2024 8/52

Another Addendum to the Invertible Matrix Thm.

Theorem:

The $n \times n$ matrix A is invertible if and only if^a

(s) The number 0 is not an eigenvalue of A.

(t) The determinant of A is nonzero.

^aThis is nothing new, we're just adding to the list.

Section 5.2: The Characteristic Equation Find the eigenvalues of $A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$ by appealing to the fact that the equation $A\mathbf{x} = \lambda I_2 \mathbf{x}$ can be restated as:

Find a nontrivial solution of the homogeneous equation

 $(\boldsymbol{A} - \lambda \boldsymbol{I}_2) \mathbf{x} = \mathbf{0}.$

we need det
$$(A \cdot XI) = 0$$

 $A - XI = \begin{bmatrix} 2 & 3 \\ -3 & -6 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 3 \\ -3 & -6 - \lambda \end{bmatrix}$

 $det(A-\lambda I) = (z-\lambda)(-(b-\lambda)) - 3.3$

$$= -\lambda^{2} + 4_{\lambda} - 12 - 9$$

April 3, 2024 10/52

= 12 + 4X - 21

set to zero, $\lambda^2 + 4\lambda - 21 = 0$ (x + 7)(x - 3) = 0we find two eigenvalues $\lambda_1 = -7$, $\lambda_2 = 3$

> < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで April 3, 2024 11/52

Characteristic Equation

Definition:

For $n \times n$ matrix A, the expression det $(A - \lambda I)$ is an n^{th} degree polynomial in λ . It is called the **characteristic polynomial** of A.

Definition:

The equation det $(A - \lambda I) = 0$ is called the **characteristic equation** of *A*.

Theorem:

The scalar λ is an eigenvalue of the matrix *A* if and only if it is a root of the characteristic equation.

<ロト <四ト < 回ト < 回ト < 回ト = 三回</p>

April 3, 2024

13/52