April 6 Math 3260 sec. 51 Spring 2022

Section 4.5: Dimension of a Vector Space
Theorem: If a vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then any set of vectors in V containing more than n vectors is linearly dependent.

We saw an example of this in \mathbb{R}^{n}. Remember that if we had more vectors than entries in each vector, the set was automatically linearly dependent. For example

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{r}
2 \\
10 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
8
\end{array}\right]\right\}
$$

is linearly dependent because there are 4 vectors from \mathbb{R}^{3}.

Example
Recall that a basis for \mathbb{P}_{3} is $\left\{1, t, t^{2}, t^{3}\right\}$. Is the set

$$
\left\{1+t, 2 t-3 t^{3}, 1+t+t^{2}, 1+t+t^{2}+t^{3}, 2-t+2 t^{3}\right\}
$$

linearly dependent or linearly independent?
This is 5 vectors in \mathbb{P}_{3}. Since \mathbb{P}_{3} has a basis w/ 4 vectors in it, this set is automat: call linearly dependent.

Dimension

Corollary: If vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then every basis of V consist of exactly n vectors.

Definition: If V is spanned by a finite set, then V is called finite dimensional. In this case, the dimension of V

$$
\operatorname{dim} V=\text { the number of vectors in any basis of } V \text {. }
$$

The dimension of the vector space $\{\mathbf{0}\}$ containing only the zero vector is defined to be zero-i.e.

$$
\operatorname{dim}\{\mathbf{0}\}=0 .
$$

If V is not spanned by a finite set ${ }^{1}$, then V is said to be infinite dimensional.
${ }^{1} C^{0}(\mathbb{R})$ is an example of an infinite dimensional vector space.

Examples
(a) Find $\operatorname{dim}\left(\mathbb{R}^{n}\right)$. $\quad A$ basis is $\quad \zeta=\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$

$$
\Rightarrow \quad \operatorname{dim}\left(\mathbb{R}^{n}\right)=n
$$

(b) Determine dim Col A where $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 0 & 0 & -1\end{array}\right]$.
A is an ref. It has 2 pivot columns.

$$
\operatorname{dim}(\operatorname{col}(A))=2
$$

Some Geometry in \mathbb{R}^{3}

We can describe all of the subspaces of \mathbb{R}^{3} geometrically. The subspace(s) of dimension
(a) zero: is just the origin (one point), ($0,0,0$).
(b) one: are lines through the origin. Span $\{\mathbf{u}\}$ where \mathbf{u} is not the zero vector.
(c) two: are planes that contain the origin and two other, noncolinear points. Span $\{\mathbf{u}, \mathbf{v}\}$ with $\{\mathbf{u}, \mathbf{v}\}$ linearly independent.
(d) three: is all of \mathbb{R}^{3}.

Subspaces and Dimension

Theorem: Let H be a subspace of a finite dimensional vector space V. Then H is finite dimensional and

$$
\operatorname{dim} H \leq \operatorname{dim} V .
$$

Moreover, any linearly independent subset of H can be expanded if needed to form a basis for H.

Subspaces and Dimension

Theorem: Let V be a vector space with $\operatorname{dim} V=p$ where $p \geq 1$. Any linearly independent set in V containing exactly p vectors is a basis for V. Similarly, any spanning set consisting of exactly p vectors in V is necessarily a basis for V.

Remark: this connects two properties spanning and linear independence. If $\operatorname{dim} V=p$ and a set contains p vectors then

- linear independence \Longrightarrow spanning
- spanning \Longrightarrow linear independence

Again, this is IF the number of vectors matches the dimension of the vector space.

Column and Null Spaces

Theorem: Let A be an $m \times n$ matrix. Then $\operatorname{dim} \operatorname{Nul} A=$ the number of free variables in the equation $A \mathbf{x}=\mathbf{0}$,
and
$\operatorname{dim} \operatorname{Col} A=$ the number of pivot positions in A.

Example
A matrix A is show along with its ref. Find the dimensions of the null space and column space of A.

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-3 & 1 & -7 & -1 \\
3 & 0 & 6 & 1
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

For $A \vec{x}=\overrightarrow{0}$ then would be one because there is one non pivot column.

Hence $\operatorname{dim}(\operatorname{Nul}(A))=1$
Then are 3 pivot positions (Columns)
So $\quad \operatorname{din}(\operatorname{col}(A))=3$.

Example
A matrix A along with its ref is shown.

$$
A=\left[\begin{array}{ccccc}
-2 & -5 & 8 & 0 & -17 \\
1 & 3 & -5 & 1 & 5 \\
3 & 11 & -19 & 7 & 1 \\
1 & 7 & -13 & 5 & -3
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & -2 & 0 & 3 \\
0 & 0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \text { of }
$$

(a) Find a basis for Row A and state the dimension dim Row A.
we get basis vectors from the ref.

$$
\begin{gathered}
A \text { basis is }\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-2 \\
0 \\
3
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
-5
\end{array}\right]\right\} \\
\operatorname{din}(\operatorname{Row}(A))=3
\end{gathered}
$$

Example continued ...

$$
A=\left[\begin{array}{ccccc}
-2 & -5 & 8 & 0 & -17 \\
1 & 3 & -5 & 1 & 5 \\
3 & 11 & -19 & 7 & 1 \\
1 & 7 & -13 & 5 & -3
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & -2 & 0 & 3 \\
0 & 0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(b) Find a basis for $\mathrm{Col} A$ and state its dimension.
we get the basis vectors from A 's pivot columns. A basis is $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{c}-5 \\ 3 \\ 1 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 7 \\ 5\end{array}\right]\right\}$.

$$
\operatorname{din}(\operatorname{col}(A))=3
$$

Example continued ...

$A=\left[\begin{array}{ccccc}-2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3\end{array}\right] \sim\left[\begin{array}{ccccc}1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(c) Find a basis for Jul A and state its dimension.

From the rect, solutions to $A \vec{x}=\overrightarrow{0}$ satisfy

$$
\vec{x}=x_{3}\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-1 \\
-3 \\
0 \\
5 \\
1
\end{array}\right]
$$

A basis for Null (A) is

$$
\left\{\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-3 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

And $\quad \operatorname{dim}(\operatorname{Nul}(A))=2$.

Remarks

- Row operations preserve row space, but change linear dependence relations of rows. Row operations change column space, but preserve linear dependence relations of columns.
- Another way to obtain a basis for Row A is to take the transpose A^{T} and do row operations. We have the following relationships:

$$
\operatorname{Col} A=\operatorname{Row} A^{T} \quad \text { and } \quad \operatorname{Row} A=\operatorname{Col} A^{T} .
$$

Rank \& Nullity

Definition: The rank of a matrix A, denoted $\operatorname{rank}(A)$, is the dimension of the column space of A.

Definition: The nullity of a matrix A is the dimension of the null space.

Remark: Since the dimension of the column space is the number of pivot positions, $\operatorname{dim} \operatorname{Col}(A)=\operatorname{dim} \operatorname{Row}(A)$. That is, the rank, dimension of the columns space, and dimension of the row space are all the same.

The Rank-Nullity Theorem

Theorem: For $m \times n$ matrix $A, \operatorname{dim} \operatorname{Col} A=\operatorname{dim} \operatorname{Row} A=\operatorname{rank} A$. Moreover
rank $A+\operatorname{dim} \operatorname{Nul} A=n$.

Note: This theorem states the rather obvious fact that
$\left\{\begin{array}{c}\text { number of } \\ \text { pivot columns }\end{array}\right\}+\left\{\begin{array}{c}\text { number of } \\ \text { non-pivot columns }\end{array}\right\}=\left\{\begin{array}{c}\text { total number } \\ \text { of columns }\end{array}\right\}$.

Examples
(1) A is a 5×4 matrix with rank $A=4$. What is $\operatorname{dim} \operatorname{Nul} A$?

$$
\text { rank }+ \text { nullity }=n
$$

Were $n=4$. Given $\operatorname{rank}(A)=4$

$$
\begin{aligned}
4 & +\operatorname{din}(\operatorname{Nel} A)=4 \\
& \Longrightarrow \operatorname{din}(\operatorname{Nue}(A))=0
\end{aligned}
$$

Examples

$$
\text { rank }+ \text { nullity }=n
$$

(2) If A is 7×5 and $\operatorname{dim} \operatorname{Col} A=2$. Determine

1. the nullity of $A \quad \operatorname{rank}(A)=\operatorname{dim}\left(C_{0} \cap A\right)=2, n=5$

$$
\text { nullity }=5-2=3
$$

2. the rank of A^{T}

$$
\operatorname{rank}\left(A^{\top}\right)=\operatorname{din}\left(\operatorname{col} A^{\top}\right)=\operatorname{din}(\operatorname{Row} A)=\operatorname{rank} A=2
$$

3. the nullity of A^{T}

$$
A^{\top} \text { is } 5 \times 7 \text {, so for } A^{\top}, n=7
$$

for A^{\top} nullity $=7-2=5$.

Addendum to Invertible Matrix Theorem

Let A be an $n \times n$ matrix. The following are equivalent to the statement that A is invertible.
(m) The columns of A form a basis for \mathbb{R}^{n}
(n) $\operatorname{Col} A=\mathbb{R}^{n}$
(o) $\operatorname{dim} \operatorname{Col} A=n$
(p) rank $A=n$
(q) $\operatorname{Nul} A=\{\mathbf{0}\}$
(r) $\operatorname{dim} \operatorname{Nul} A=0$

Section 5.1: Eigenvectors and Eigenvalues ${ }^{2}$

Consider the matrix $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right]$ and the vectors $\mathbf{u}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and
$\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Plot $\mathbf{u}, A \mathbf{u}, \mathbf{v}$, and $A \mathbf{v}$ on the axis on the next slide.
Lets compute $A \vec{u}$ and $A \vec{v}$

$$
\begin{aligned}
& A \vec{u}=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-5 \\
-1
\end{array}\right] \\
& A \vec{v}=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
\end{aligned}
$$

[^0]Example Plot
A seams to stretch \rightarrow rotate \vec{u}

Eigenvalues and Eigenvectors

Note that in this example, the matrix A seems to both stretch and rotate the vector \mathbf{u}. But the action of A on the vector \mathbf{v} is just a stretch/compress. That is $A \mathbf{v}$ is in $\operatorname{Span}\{\mathbf{v}\}$.

We wish to consider matrices with vectors that satisfy relationships such as

$$
A \mathbf{x}=2 \mathbf{x}, \quad \text { or } \quad A \mathbf{x}=-4 \mathbf{x}, \quad \text { or more generally } \quad A \mathbf{x}=\lambda \mathbf{x}
$$

for constant λ —and for nonzero vector \mathbf{x}.

[^0]: ${ }^{2}$ We'll forgo section 4.6 and come back if time allows

