April 8 Math 3260 sec. 51 Spring 2022 Section 5.1: Eigenvectors and Eigenvalues

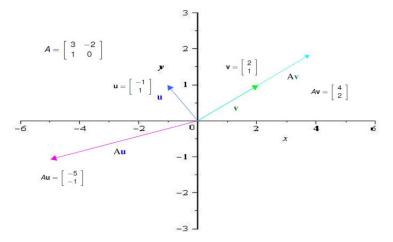


Figure: We saw that multiplication by the matrix *A* scaled and rotated **u**. It only scaled **v**. In fact, $A\mathbf{v} = 2\mathbf{v}$.

April 6, 2022

Eigenvalues and Eigenvectors

Most vectors are expected to be like **u**, without any obvious relationship between **u** and *A***u**. The relationship between **v** and *A***v** is remarkable in that *A***v** is contained in Span{**v**}.

We wish to consider matrices with vectors that satisfy relationships such as

$$A\mathbf{x} = 2\mathbf{x}$$
, or $A\mathbf{x} = -4\mathbf{x}$, or more generally $A\mathbf{x} = \lambda \mathbf{x}$

for constant λ —and for nonzero vector **x**.

< ロ > < 同 > < 回 > < 回 >

Definition of Eigenvector and Eigenvalue

Definition: Let *A* be an $n \times n$ matrix. A nonzero vector **x** such that

 $A\mathbf{x} = \lambda \mathbf{x}$

for some scalar λ is called an **eigenvector** of the matrix *A*.

A scalar λ such that there exists a nonzero vector **x** satisfying $A\mathbf{x} = \lambda \mathbf{x}$ is called an **eigenvalue** of the matrix *A*. Such a nonzero vector **x** is an *eigenvector corresponding to* λ .

Note that built right into this definition is that the eigenvector **x must be** nonzero!

April 6, 2022

Example

The number $\lambda = -4$ is an eigenvalue of the matrix $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$. Find the corresponding eigenvectors.

We need Vector(s)
$$\vec{x}$$
 such that
 $A\vec{x} = -4\vec{x}$. Let $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
 $A\vec{y} = \begin{bmatrix} 1 & 6 \\ s & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + 6x_2 \\ sx_1 + 2x_2 \end{bmatrix} = -4 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -4x_1 \\ -4x_2 \end{bmatrix}$
 $\Rightarrow x_1 + 6x_2 = -4x_1$ Subtract $-4x_1 + -4x_2$
 $5x_1 + 2x_2 = -4x_2$ from eqn. 1 or 2

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへぐ April 6, 2022 4/33

$$(1 - (-4))\chi_1 + 6\chi_2 = 0$$

 $5\chi_1 + (2 - (-4))\chi_2 = 0$ horogeneous
 $5\chi_1 + (2 - (-4))\chi_2 = 0$ System

$$\Rightarrow 5x_1 + 6x_2 = 0 \Rightarrow \begin{bmatrix} 5 & 6 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} s & 6 & 0 \\ s & 6 & 0 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 6 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{X_{z}} \xrightarrow{-6} X_{z}$$

The vectors $\vec{X} = \chi_2 \begin{pmatrix} -6/s \\ i \end{pmatrix}$. These are eigenvectors for all $\chi_2 \neq 0$.

$$\vec{X}$$
.
 $\begin{bmatrix} I & 6 \\ S & z \end{bmatrix} \begin{bmatrix} -6 \\ -5 \end{bmatrix} = \begin{bmatrix} 24 \\ -20 \end{bmatrix} = -4 \begin{bmatrix} -6 \\ -5 \end{bmatrix}$

Definition: Let *A* be an $n \times n$ matrix and λ and eigenvalue of *A*. The set of all eigenvectors corresponding to λ together with the zero vector—i.e. the set

 $\{\mathbf{x} \in \mathbb{R}^n \mid \text{ and } A\mathbf{x} = \lambda \mathbf{x}\},\$

is called the eigenspace of A corresponding to λ .

Remark: The eigenspace is the same as the null space of the matrix $A - \lambda I$. It follows that the eigenspace is a subspace of \mathbb{R}^n .

April 6, 2022

Example The matrix $A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$ has eigenvalue $\lambda = 2$. Find a basis for

The eigenspace is the null space of
$$A - \lambda I$$
.
 $A - \lambda I = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6 \end{bmatrix}$
find the real $\begin{bmatrix} 1 & -1/2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} X_1 = \frac{1}{2}X_2 - 3X_3$
 X_1, X_3 free

• • • • • • • • • • • • •

Solution to (A-XI)X= J look like $\vec{X} = \chi_2 \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix} + \chi_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$ The eigenspace is Nul (A-XI). A besis is $\left\{ \left(\begin{array}{c} 1/2\\ 1\\ 0 \end{array} \right), \left(\begin{array}{c} -3\\ 0\\ 1 \end{array} \right) \right\} \right\}$

Matrices with Nice Structure

Theorem: If A is an $n \times n$ triangular matrix, then the eigenvalues of A are its diagonal elements.

・ロト ・ 日 ト ・ ヨ ト ・

April 6, 2022

Find the eigenvalues of the matrix
$$A = \begin{bmatrix} 3 & 0 & 0 \\ -2 & \pi & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

Example

Suppose $\lambda = 0$ is an eigenvalue¹ of a matrix *A*. Argue that *A* is not invertible.

Since
$$\lambda = 0$$
 is an eigenvalue, then is
a nonzero vector \vec{X} such that
 $A\vec{x} = 0\vec{x} = \vec{0}$
This says their is a non-trivial solution
to the honogeneous equation $A\vec{x} = \vec{0}$.
If A were invertible, $A\vec{x} = \vec{3}$ would only
howe the trivial solution. Hence A is singular.

¹Eigenvectors must be nonzero vectors, but it is perfectly legitimate to have a zero eigenvalue!

Theorem: A square matrix *A* is invertible if and only if zero is **not** and eigenvalue.

Theorem: If $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are eigenvectors of a matrix A corresponding to distinct eigenvalues, $\lambda_1, \ldots, \lambda_r$, then the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is linearly independent.