April 8 Math 3260 sec. 51 Spring 2024

Section 5.2: The Characteristic Equation

Definition:

Let A be an $n \times n$ matrix. A nonzero vector **x** such that

 $A\mathbf{x}=\lambda\mathbf{x}$

for some scalar λ is called an **eigenvector** of the matrix *A*.

A scalar λ such that there exists a nonzero vector **x** satisfying $A\mathbf{x} = \lambda \mathbf{x}$ is called an **eigenvalue** of the matrix *A*. Such a nonzero vector **x** is an *eigenvector corresponding to* λ .

Eigenspace

Definition:

Let *A* be an $n \times n$ matrix and λ and eigenvalue of *A*. The set of all eigenvectors corresponding to λ together with the zero vector—i.e. the set

$$\{\mathbf{x} \in \mathbb{R}^n \mid \text{ and } A\mathbf{x} = \lambda \mathbf{x}\} = \operatorname{Nul}(A - \lambda I)$$

is called the eigenspace of A corresponding to λ .

Finding Eigenvalues

The requirement that $(A - \lambda I)\mathbf{x} = \mathbf{0}$ has **non-trivial** solutions can be restated as the condition

$$\det(\boldsymbol{A} - \lambda \boldsymbol{I}) = \boldsymbol{0}.$$

This is a scalar equation for the number(s) λ .

Characteristic Equation

Definition:

For $n \times n$ matrix A, the expression det $(A - \lambda I)$ is an n^{th} degree polynomial in λ . It is called the **characteristic polynomial** of A.

Definition:

The equation det $(A - \lambda I) = 0$ is called the **characteristic equation** of *A*.

Theorem:

The scalar λ is an eigenvalue of the matrix *A* if and only if it is a root of the characteristic equation.

ヘロマ 人名マ イヨマ イヨマ

Example

Find the characteristic equation for the matrix and identify all of its eigenvalues.

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad (e \text{ need } det(A - \lambda I) = 0.$$

$$det (A - \lambda I) = (S - \lambda) (3 - \lambda) (S - \lambda) (1 - \lambda)$$

■ ▶ ◀ ■ ▶ ■ ∽ ९ ୯ April 5, 2024 4/42

イロト イヨト イヨト イヨト

Characteristic egn is

$$(5-\lambda)^{2}(3-\lambda)(1-\lambda) = 0$$

 $x^{4}-14x^{3}+68x^{2}-130x+75=0$
The eigenvalues are
 $\lambda_{1} = 5$, $\lambda_{2} = 3$, and $\lambda_{3} = 1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Multiplicities

Definition:

The **algebraic multiplicity** of an eigenvalue is its multiplicity as a root of the characteristic equation. The **geometric multiplicity** is the dimension of its corresponding eigenspace.

Example Find the algebraic and geometric multiplicity of the eigenvalue $\lambda = 5$ of

 $A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ The characteristic cycothin is $(s - \lambda)^{2}(3 - \lambda)(1 - \lambda) = 0$ \therefore $\lambda = 5 \text{ has algebraic multiplicity Z}$ April 5.2024 = 6/42

since X-5 is a double factor. To find the geometric multiplicity, we need to find a basis for the eigenspace

$$A - 5I = \begin{pmatrix} 0 & -2 & 6 & -1 \\ 0 & -2 & -8 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & -4 \end{pmatrix}$$

April 5, 2024 7/42

April 5, 2024 8/42

୬ବ୍ଦ

▲口> ▲圖> ▲豆> ▲豆> 三豆

Similarity

Definition:

Two $n \times n$ matrices *A* and *B* are said to be **similar** if there exists an invertible matrix *P* such that

$$B=P^{-1}AP.$$

The mapping $A \mapsto P^{-1}AP$ is called a similarity transformation^{*a*}.

^aNote: similarity is NOT related to row equivalence.

Theorem:

If *A* and *B* are similar matrices, then they have the same characteristic equation, and hence the same eigenvalues.

If $B = P^{-1}AP$, then det $(B - \lambda I) = det(A - \lambda I)$ Note I=P'IP $dit(B-\lambda I) = dit(P'AP - \lambda I)$ $= \lambda + (P'AP - \lambda P'TP)$ = $dt(P^{\prime}(AP - \lambda TP))$ = $U (P'(A - \lambda I)P)$ = det (p-') det (A - x I) det (P) = det (A-xI) det (P') det (P)

April 5, 2024 10/42

イロト 不得 トイヨト イヨト 二日

= dt (A-xI) det (P'P)

= dut (A-xI) ·1

= dr (A-JI)