April 8 Math 3260 sec. 52 Spring 2022 Section 5.1: Eigenvectors and Eigenvalues

Figure: We saw that multiplication by the matrix *A* scaled and rotated **u**. It only scaled **v**. In fact, $A\mathbf{v} = 2\mathbf{v}$.

April 6, 2022

1/33

Eigenvalues and Eigenvectors

Most vectors are expected to be like **u**, without any obvious relationship between **u** and *A***u**. The relationship between **v** and *A***v** is remarkable in that *A***v** is contained in Span{**v**}.

We wish to consider matrices with vectors that satisfy relationships such as

$$A\mathbf{x} = 2\mathbf{x}$$
, or $A\mathbf{x} = -4\mathbf{x}$, or more generally $A\mathbf{x} = \lambda \mathbf{x}$

for constant λ —and for nonzero vector **x**.

< ロ > < 同 > < 回 > < 回 >

Definition of Eigenvector and Eigenvalue

Definition: Let *A* be an $n \times n$ matrix. A nonzero vector **x** such that

 $A\mathbf{x} = \lambda \mathbf{x}$

for some scalar λ is called an **eigenvector** of the matrix *A*.

A scalar λ such that there exists a nonzero vector **x** satisfying $A\mathbf{x} = \lambda \mathbf{x}$ is called an **eigenvalue** of the matrix *A*. Such a nonzero vector **x** is an *eigenvector corresponding to* λ .

Note that built right into this definition is that the eigenvector **x must be** nonzero!

April 6, 2022

3/33

Example

The number $\lambda = -4$ is an eigenvalue of the matrix $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$. Find the corresponding eigenvectors.

We want to find nonzero vector (5) \vec{X} such that $A\vec{X} = \lambda\vec{X}$. Let $\vec{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$. $A\vec{X} = \begin{bmatrix} 1 & 6 \\ S & 2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} X_1 + 6X_2 \\ SX_1 + 2X_2 \end{bmatrix} = -4\vec{X} = -4 \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} -4X_1 \\ -4X_2 \end{bmatrix}$

≠ X,+ 6X2 = -4X, We can subtract -UX, or 5X1+2X2 = -4X2 -4X2 from each equation

 $(1 - (-4))X_1 + 6X_2 = 0$ $5X_1 + (2 - (-4))X_1 = 0$ homogeneous system

 $5X_{1} + 6X_{2} = 0$ $SX_{1} + 6X_{2} = 0$ $\Rightarrow \begin{bmatrix} 5 & 6 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Using a augmented matrix $\begin{bmatrix} 5 & 6 & 0 \\ 5 & 6 & 0 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 6|s & 0 \\ 0 & 0 & 0 \end{bmatrix} \times_{2} = \frac{1}{5} \times_{2}$

So the colutions $\vec{X} = X_2 \begin{bmatrix} -6/5 \\ 1 \end{bmatrix}$. The eigenvectors are all $\vec{X} = X_2 \begin{bmatrix} -6/5 \\ 1 \end{bmatrix}$. $\vec{X} = X_1 \begin{bmatrix} -6/5 \\ -1 \end{bmatrix}$ for $X_2 \neq 0$.

April 6, 2022 5/33

We can check this for some choice of \vec{X} . If $\vec{X}_2 = 5$, then $\vec{X} = \begin{bmatrix} -6\\ 5 \end{bmatrix}$.

 $A\vec{X} = \begin{pmatrix} 1 & 6 \\ s & z \end{pmatrix} \begin{pmatrix} -6 \\ -20 \end{pmatrix} = \begin{pmatrix} 24 \\ -20 \end{pmatrix} = -4 \begin{pmatrix} -6 \\ s \end{pmatrix}$

< □ ▶ < @ ▶ < 重 ▶ < 重 ▶ 重 の Q @ April 6, 2022 6/33

Definition: Let *A* be an $n \times n$ matrix and λ and eigenvalue of *A*. The set of all eigenvectors corresponding to λ together with the zero vector—i.e. the set

 $\{\mathbf{x} \in \mathbb{R}^n \mid \text{ and } A\mathbf{x} = \lambda \mathbf{x}\},\$

is called the eigenspace of A corresponding to λ .

Remark: The eigenspace is the same as the null space of the matrix $A - \lambda I$. It follows that the eigenspace is a subspace of \mathbb{R}^n .

April 6, 2022

7/33

Example

The matrix $A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$ has eigenvalue $\lambda = 2$. Find a basis for the eigenspace of *A* corresponding to λ .

were finding a basis for Nul (A-XI). $\begin{bmatrix} 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \end{bmatrix} \xrightarrow{\text{rret}} \begin{bmatrix} 1 & -\frac{1}{2} & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{X}_1 = \frac{1}{2} \times_2 - 3 \times_3} \xrightarrow{\text{are}} \xrightarrow{\text{free}}$

April 6, 2022 8/33

Solution de $(A - \lambda I) \overrightarrow{X} = \overrightarrow{0}$ look like $\overrightarrow{X} = X_2 \begin{bmatrix} \frac{1}{2} \\ 1 \\ 0 \end{bmatrix} + X_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$

A basis for the eigen space is

$$\left\{ \left[\begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right], \left[\begin{array}{c} -3 \\ 0 \\ 1 \end{array} \right] \right\}.$$

< □ ▶ < □ ▶ < 重 ▶ < 重 ▶ Ξ の Q @ April 6, 2022 9/33

Matrices with Nice Structure

F

Theorem: If A is an $n \times n$ triangular matrix, then the eigenvalues of A are its diagonal elements.

Find the eigenvalues of the matrix
$$A = \begin{bmatrix} 3 & 0 & 0 \\ -2 & \pi & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

April 6, 2022 10/33

• • • • • • • • • • • •

Example

Suppose $\lambda = 0$ is an eigenvalue¹ of a matrix *A*. Argue that *A* is not invertible.

We know there is a nonzero vector \overline{x} such that $A\overline{x} = O\overline{x} = \overline{0}$. That is $A\overline{x} = \overline{0}$ has a nontrivial solution. Hence A is singular.

¹Eigenvectors must be nonzero vectors, but it is perfectly legitimate to have a zero eigenvalue!

Theorem: A square matrix *A* is invertible if and only if zero is **not** and eigenvalue.

Theorem: If $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are eigenvectors of a matrix A corresponding to distinct eigenvalues, $\lambda_1, \ldots, \lambda_r$, then the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is linearly independent.