April 8 Math 3260 sec. 52 Spring 2022

Section 5.1: Eigenvectors and Eigenvalues

Figure: We saw that multiplication by the matrix A scaled and rotated \mathbf{u}. It only scaled \mathbf{v}. In fact, $A \mathbf{v}=2 \mathbf{v}$.

Eigenvalues and Eigenvectors

Most vectors are expected to be like \mathbf{u}, without any obvious relationship between \mathbf{u} and $A \mathbf{u}$. The relationship between \mathbf{v} and $A \mathbf{v}$ is remarkable in that $A \mathbf{v}$ is contained in $\operatorname{Span}\{\mathbf{v}\}$.

We wish to consider matrices with vectors that satisfy relationships such as

$$
A \mathbf{x}=2 \mathbf{x}, \quad \text { or } \quad A \mathbf{x}=-4 \mathbf{x}, \quad \text { or more generally } \quad A \mathbf{x}=\lambda \mathbf{x}
$$

for constant λ-and for nonzero vector \mathbf{x}.

Definition of Eigenvector and Eigenvalue

Definition: Let A be an $n \times n$ matrix. A nonzero vector \mathbf{x} such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

for some scalar λ is called an eigenvector of the matrix A.

A scalar λ such that there exists a nonzero vector \mathbf{x} satisfying $A \mathbf{x}=\lambda \mathbf{x}$ is called an eigenvalue of the matrix A. Such a nonzero vector \mathbf{x} is an eigenvector corresponding to λ.

Note that built right into this definition is that the eigenvector \mathbf{x} must be nonzero!

Example
The number $\lambda=-4$ is an eigenvalue of the matrix $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$. Find the corresponding eigenvectors.

We want to find nonzero vector (s) \vec{x} such that

$$
\begin{aligned}
& A \vec{x}=\lambda \vec{x} . \text { Let } \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] . \\
& A \vec{x}=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+6 x_{2} \\
5 x_{1}+2 x_{2}
\end{array}\right]=-4 \vec{x}=-4\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
-4 x_{1} \\
-4 x_{2}
\end{array}\right]
\end{aligned}
$$

$$
\Rightarrow \quad x_{1}+6 x_{2}=-4 x_{1}
$$

We con subtract $-U X_{1}$ or $5 x_{1}+2 x_{2}=-4 x_{2}$ $-4 x_{2}$ from e each equation

$$
\begin{array}{cc}
(1-(-4)) x_{1}+6 x_{2}=0 & \text { homo ogereas } \\
\text { system }
\end{array}
$$

using an augmented matrix

$$
\begin{aligned}
& \text { ing an augmented matrix } \\
& {\left[\begin{array}{lll}
5 & 6 & 0 \\
5 & 6 & 0
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{ccc}
1 & 6 / 5 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
x_{1}=-\frac{6}{5} x_{2} \\
x_{2} \text {-free }
\end{array}}
\end{aligned}
$$

So the solutions

$$
\begin{array}{r}
\text { The eigenvectors are all } \\
\vec{x}=x_{2}\left[\begin{array}{c}
-6 / 5 \\
1
\end{array}\right] \quad \vec{x}=x_{2}\left[\begin{array}{c}
-6 / 5 \\
1
\end{array}\right] \text { for } x_{2} \neq 0 .
\end{array}
$$

We con check this for some choice of \vec{x}. If $x_{2}=5$, then $\vec{x}=\left[\begin{array}{c}-6 \\ 5\end{array}\right]$.

$$
A \vec{x}=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]\left[\begin{array}{c}
-6 \\
5
\end{array}\right]=\left[\begin{array}{c}
24 \\
-20
\end{array}\right]=-4\left[\begin{array}{c}
-6 \\
5
\end{array}\right]
$$

Eigenspace

Definition: Let A be an $n \times n$ matrix and λ and eigenvalue of A. The set of all eigenvectors corresponding to λ together with the zero vector-i.e. the set

$$
\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \text { and } A \mathbf{x}=\lambda \mathbf{x}\right\}
$$

is called the eigenspace of A corresponding to λ.

Remark: The eigenspace is the same as the null space of the matrix $A-\lambda I$. It follows that the eigenspace is a subspace of \mathbb{R}^{n}.

Example
The matrix $A=\left[\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$ has eigenvalue $\lambda=2$. Find a basis for the eigenspace of A corresponding to λ.
were finding a basis for $\operatorname{Nu}(A-\lambda I)$.

$$
\begin{aligned}
& A-\lambda I=\left[\begin{array}{ccc}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right]-2\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
2 & -1 & 6 \\
2 & -1 & 6 \\
2 & -1 & 6
\end{array}\right] \\
& {\left[\begin{array}{cccc}
2 & -1 & 6 & 0 \\
2 & -1 & 6 & 0 \\
2 & -1 & 6 & 0
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{cccc}
1 & -1 / 2 & 3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{c}
x_{1}=\frac{1}{2} x_{2}-3 x_{3} \\
x_{2}, x_{3} \text { are } \\
\text { free }
\end{array}}
\end{aligned}
$$

Solutions do $(A-\lambda I) \vec{x}=\overrightarrow{0}$ poole like

$$
\vec{x}=x_{2}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]
$$

A basis for the eigen space is

$$
\left\{\left[\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]\right\}
$$

Matrices with Nice Structure

Theorem: If A is an $n \times n$ triangular matrix, then the eigenvalues of A are its diagonal elements.

Find the eigenvalues of the matrix $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ -2 & \pi & 0 \\ -1 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& A \text { is lower triangular with eigen values } \\
& \qquad 3, \pi \text {, and } 1 .
\end{aligned}
$$

Example
Suppose $\lambda=0$ is an eigenvalue ${ }^{1}$ of a matrix A. Argue that A is not invertible.

We know there is a nonzero vector \bar{x}
sued that $A \vec{x}=O \vec{x}=\overrightarrow{0}$.
That is $A \vec{x}=\overrightarrow{0}$ has a nontrivial solution.

Pence A is singular.
${ }^{1}$ Eigenvectors must be nonzero vectors, but it is perfectly legitimate to have a zero eigenvalue!

April 6, $2022 \quad 11 / 33$

Theorems

Theorem: A square matrix A is invertible if and only if zero is not and eigenvalue.

Theorem: If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are eigenvectors of a matrix A corresponding to distinct eigenvalues, $\lambda_{1}, \ldots, \lambda_{r}$, then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly independent.

