April 8 Math 3260 sec. 52 Spring 2024

Section 5.2: The Characteristic Equation

Definition:

Let A be an $n \times n$ matrix. A nonzero vector \mathbf{x} such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

for some scalar λ is called an eigenvector of the matrix A.
A scalar λ such that there exists a nonzero vector \mathbf{x} satisfying $A \mathbf{x}=\lambda \mathbf{x}$ is called an eigenvalue of the matrix A. Such a nonzero vector \mathbf{x} is an eigenvector corresponding to λ.

Eigenspace

Definition:

Let A be an $n \times n$ matrix and λ and eigenvalue of A. The set of all eigenvectors corresponding to λ together with the zero vector-i.e. the set

$$
\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \text { and } A \mathbf{x}=\lambda \mathbf{x}\right\}=\operatorname{Nul}(A-\lambda I)
$$

is called the eigenspace of A corresponding to λ.

Finding Eigenvalues

The requirement that $(A-\lambda /) \mathbf{x}=\mathbf{0}$ has non-trivial solutions can be restated as the condition

$$
\operatorname{det}(A-\lambda I)=0
$$

This is a scalar equation for the number(s) λ.

Characteristic Equation

Definition:

For $n \times n$ matrix A, the expression $\operatorname{det}(A-\lambda I)$ is an $n^{t h}$ degree polynomial in λ. It is called the characteristic polynomial of A.

Definition:

The equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of A.

Theorem:

The scalar λ is an eigenvalue of the matrix A if and only if it is a root of the characteristic equation.

Example
Find the characteristic equation for the matrix and identify all of its eigenvalues.

$$
\begin{aligned}
& A= {\left[\begin{array}{cccc}
5 & -2 & 6 & -1 \\
0 & 3 & -8 & 0 \\
0 & 0 & 5 & 4 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \operatorname{det}(A-\lambda I)=0 } \\
& A-\lambda I=\left[\begin{array}{cccc}
5-\lambda & -2 & 6 & -1 \\
0 & 3-\lambda & -9 & 0 \\
0 & 0 & 5-\lambda & 4 \\
0 & 0 & 0 & 1-\lambda
\end{array}\right] \\
& \operatorname{dtt}(A-\lambda I)=(5-\lambda)(3-\lambda)(5-\lambda)(1-\lambda)
\end{aligned}
$$

Charactuist.c equ is

$$
\begin{aligned}
& (5-\lambda)^{2}(3-\lambda)(1-\lambda)=0 \\
& x^{4}-14 x^{3}+68 x^{2}-130 x+75=0
\end{aligned}
$$

The eigenvalues are $\lambda_{1}=5, \lambda_{2}=3$ and $\lambda_{3}=1$.

Multiplicities

Definition:

The algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic equation. The geometric multiplicity is the dimension of its corresponding eigenspace.

Example Find the algebraic and geometric multiplicity of the eigenvalue $\lambda=5$ of
The Characteristic eph
$A=\left[\begin{array}{cccc}5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1\end{array}\right]$
is

$$
(5-\lambda)^{2}(3-\lambda)(1-\lambda)=0
$$

The algebrias multiplicity of $\lambda=S$ is two.

$$
A-5 I=\left[\begin{array}{cccc}
0 & -2 & 6 & -1 \\
0 & -2 & -9 & 0 \\
0 & 0 & 0 & 4 \\
0 & 0 & 0 & -4
\end{array}\right] \quad \begin{aligned}
& \text { solve } \\
& (A-S I) \vec{x}=\overrightarrow{0}
\end{aligned}
$$

Using an augmented matrix

$$
\left[\begin{array}{ccccc}
0 & -2 & 6 & -1 & 0 \\
0 & -2 & -8 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & -4 & 0
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

x_{1}-free

$$
x_{2}=0
$$

Eigenvectors will be

$$
x_{3}=0
$$

$$
\vec{x}=\left[\begin{array}{c}
x_{1} \\
0 \\
0 \\
0
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
x_{4}=0
$$

The eisenspaca has dimension 1 since there is ore free variable.

The geometric multiplicity of $\lambda=5$ is one.

Similarity

Definition:

Two $n \times n$ matrices A and B are said to be similar if there exists an invertible matrix P such that

$$
B=P^{-1} A P .
$$

The mapping $A \mapsto P^{-1} A P$ is called a similarity transformation ${ }^{2}$.
${ }^{a}$ Note: similarity is NOT related to row equivalence.

Theorem:

If A and B are similar matrices, then they have the same characteristic equation, and hence the same eigenvalues.

If $B=P^{-1} A P$, then $\operatorname{det}(B-\lambda I)=\operatorname{det}(A-\lambda I)$

$$
\begin{array}{rlrl}
\operatorname{det}(B-\lambda I) & =\operatorname{dt}\left(P^{-1} A P-\lambda I\right) & & \text { Note } \\
& =\operatorname{dt}\left(P^{-1} I P-\lambda P^{-1} I P\right) \\
& =\operatorname{dtt}\left(P^{-1}(A P-\lambda I P)\right) \\
& =\operatorname{det}\left(P^{-1}(A-\lambda I) P\right) \\
& =\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(P) \\
& =\operatorname{det}(A-\lambda I) \operatorname{det}\left(P^{-1}\right) \operatorname{det}(P)
\end{array}
$$

$$
\begin{aligned}
& =\operatorname{det}(A-\lambda I) \frac{\operatorname{det}\left(p^{-1} P\right)}{1} \\
\operatorname{det}(B-\lambda I) & =\operatorname{det}(A-\lambda I)
\end{aligned}
$$

