August 14 Math 2306 sec. 51 Fall 2024

Section 1: Concepts and Terminology

Suppose $y = \phi(x)$ is a differentiable function. We know that $\frac{dy}{dx} = \phi'(x)$ is another (related) function.

For example, if y = cos(2x), then y is differentiable on $(-\infty, \infty)$. In fact,

$$\frac{dy}{dx} = -2\sin(2x).$$

Even dy/dx is differentiable with $d^2y/dx^2 = -4\cos(2x)$. Note that this function happens to satisfy the equation

$$\frac{d^2y}{dx^2} + 4y = 0.$$

$$\mathcal{G}'' = \mathcal{G}_{S}(z_X) \qquad \mathcal{G}_{S}(z_X) = \mathcal{G}_{S}(z_X)$$

Equations like

$$\frac{dr}{dt} = \frac{\beta}{3\rho} \left(\frac{3\alpha}{\beta} - r \right)$$
 and $\frac{d^2y}{dx^2} + 4y = 0$

are examples of differential equations.

Some questions we can ask about this second example are

Questions
 If we only started with the equation, how could we determine that cos(2x) satisfies it?
2. Also, is $cos(2x)$ the only possible function that y could be?

We'll be able to answer these and many more questions as we proceed.

Definition

Definition

A **Differential Equation** is an equation containing the derivative(s) of one or more dependent variables, with respect to one or more indendent variables.

We can characterize the variables in calculus terms:

Independent and Dependent Variables

An **Independent Variable:** will appear as one that derivatives are taken with respect to. (The x in y = f(x).) A **Dependent**^a **Variable:** will appear as one that derivatives are taken of. (The y in y = f(x).)

^aThink of dependent variables as the functions.

Independent and Dependent Variables

Identify the independent and dependent variables in each differential equation shown.

$$\frac{d^2y}{dx^2} + 4y = 0$$
Independent x
Dependent y

$$t^2y'' - 2ty' + y = \sin(t)$$
Independent t
Dependent y

$$2\frac{d^2x}{du^2} = x^2 + u^2$$
Independent u
Dependent x

Sometimes the independent variable isn't explicitly stated, e.g., consider y'' + 4y = 0. I'll usually just call it *x* or maybe *t*.

Classifications: Type ODE or PDE

ODEs

An **ordinary differential equation (ODE)** has exactly one independent variable^{*a*}. For example

$$\frac{dy}{dx} - y^2 = 3x$$
, or $\frac{dy}{dt} + 2\frac{dx}{dt} = t$, or $y'' + 4y = 0$

^aThese are the subject of this course.

PDEs

A **partial differential equation (PDE)** has two or more independent variables. For example

$$\frac{\partial y}{\partial t} = \frac{\partial^2 y}{\partial x^2}, \quad \text{or} \quad \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

Classifications: Order

Definition

Order: The order of a differential equation is the same as the highest order derivative appearing anywhere in the equation.

Examples: Identify the order of each differential equation.

$$\frac{dy}{dx} - y^2 = 3x \qquad \text{Order} = \underline{1}^{s+} \quad O^{p \in s}$$

$$y''' + (y')^4 = x^3 \qquad \text{Order} = \underline{3}^{r+1} \quad O^{p \in s}$$

$$\frac{\partial y}{\partial t} = \frac{\partial^2 y}{\partial x^2} \qquad \text{Order} = \underline{2}^{r+1} \quad \nabla^{p \in s}$$

We'll mostly use standard derivative notations:

Leibniz:
$$\frac{dy}{dx}$$
, $\frac{d^2y}{dx^2}$, ... $\frac{d^ny}{dx^n}$, or
Prime & superscripts: y' , y'' , ... $y^{(n)}$.

Newton's **dot notation** is a special notation that is reserved for derivatives **with respect to time**. For example, if s(t) is the position of a moving particle at the time t, then

velocity is
$$\frac{ds}{dt} = \dot{s}$$
, and acceleration is $\frac{d^2s}{dt^2} = \ddot{s}$

Note that the dot is like a prime, but it's placed on top of the variable.

On occasion, we'll want to reference a generic ODE. We have a couple of formats for that.

An n^{th} order ODE, with independent variable x and dependent variable y can always be expressed as an equation

$$F(x, y, y', \ldots, y^{(n)}) = 0$$

where *F* is some real valued function of n + 2 variables.

Example: Express the equation y'' + 4y = 0 in the form

$$F(x, y, y', ..., y^{(n)}) = 0 \qquad y'' + 4y = 0 \quad is \quad in$$

this for $w : M = F(x, y, y', y'') = y'' + 4y$

Normal Form

Normal Form: If it is possible to isolate the highest derivative term, then we can write a **normal form** of the equation

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)}).$$

E.g. if
$$n = 1$$
 $\frac{dy}{dx} = f(x, y)$, if $n = 2$ $\frac{d^2y}{dx^2} = f(x, y, y')$.

Example: Express the equation y'' + 4y = 0 in the normal form.

Subtract 4.9
$$y'' = -4y$$

 $f(x, y, y') = -4y$

Differential Form

If M(x, y) and N(x, y) are functions of the variables x and y, then an expression of the form

$$M(x,y) dx + N(x,y) dy$$

is called a **Differential Form**. A first order equation may be written in terms of a differential form as follows:

$$M(x,y)\,dx+N(x,y)\,dy=0$$

Note that this can be rearranged into a couple¹ of different normal forms

$$\frac{dy}{dx} = -\frac{M(x,y)}{N(x,y)}$$
 or $\frac{dx}{dy} = -\frac{N(x,y)}{M(x,y)}$

¹We have to assume that N or M is nonzero as needed.

Classifications: Linearity

Linear Differential Equation

Linearity: An *n*th order differential equation is said to be **linear** if it can be written in the form

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x).$$

Example First Order:

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Example Second Order:

$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Properties of a Linear ODE

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x).$$

Properties of Linear ODEs

- Each of the coefficients a₀,..., a_n and the right hand side g may depend on the independent variable but not the dependent one.
- y, and its derivatives can only appear as themselves (not squared, square rooted, inside some other function).
- The characteristic structure of the left side is that

$$y, \quad \frac{dy}{dx}, \quad \frac{d^2y}{dx^2}, \quad \dots, \quad \frac{d^ny}{dx^n}$$

are multiplied by functions of the independent variable and added together.

Examples (Linear -vs- Nonlinear)

Verify that the two equations here are linear.

 $t^2 \frac{d^2 x}{dt^2} + 2t \frac{dx}{dt} - x = e^t$ v'' + 4v = 0 $a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$ glt)= et q(x) = 0 $a_{n}(t) = -1$ $a_{0}(x) - 4$ $a_{1}(t) = 2t$ $a_1(x) = 0$ $C_{1}(t) = t^{2}$ $a_{-}(x) = 1_{-}$

Examples (Linear -vs- Nonlinear)

Determine why the following two equations are nonlinear.

 $\frac{d^3y}{dx^3} + \left(\frac{dy}{dx}\right)^4 = x^3 \qquad u'' + u' = \cos u$ $y''' + (y')^3 y' = x^3 \qquad u \text{ is dependent}$ $\sum_{\substack{n \text{ ord} \\ n \text{ ord}}} \sum_{\substack{n \text{ ord} \\ n \text{ ord}}$

* u"+u' = ast be would be

Example: Classification

Identify the independent and dependent variables. Determine the order of the equation. State whether it is linear or nonlinear.

(a)
$$y'' + 2ty' = \cos t + y - y'''$$
 rearrange
 $y''' + y'' + zty' - y = \cos t$

- independent var. t
- dependent var. _____
 order 3⁽¹⁾
- order <u>5°</u>
 linear/nonlinear <u>live</u> c

Identify the independent and dependent variables. Determine the order of the equation. State whether it is linear or nonlinear.

(b) $\ddot{\theta} + \frac{g}{\ell} \sin \theta = 0$ g and ℓ are constant O is dependent Sin O is a non linear term independent var. <u>time</u> t dependent var. <u>9</u> ▶ order २[~] linear/nonlinear ^ ^ ^ ^